Menu Close

Category: Integration

Question-203385

Question Number 203385 by patrice last updated on 18/Jan/24 Answered by Mathspace last updated on 18/Jan/24 $${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{3}} }\:\Rightarrow{I}=\int_{\mathrm{0}} ^{\mathrm{1}} \sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{3}{n}}…

Question-202930

Question Number 202930 by Calculusboy last updated on 06/Jan/24 Answered by MathematicalUser2357 last updated on 06/Jan/24 $$\mathrm{No}\:\mathrm{antiderivative}\:\mathrm{could}\:\mathrm{be}\:\mathrm{found}\:\mathrm{within}\:\mathrm{the}\:\mathrm{given} \\ $$$$\mathrm{time}\:\mathrm{limit},\:\mathrm{or}\:\mathrm{all}\:\mathrm{supported}\:\mathrm{integration}\:\mathrm{methods} \\ $$$$\mathrm{were}\:\mathrm{tried}\:\mathrm{unsuccessfully}.\:\mathrm{Note}\:\mathrm{that}\:\mathrm{many}\:\mathrm{functions} \\ $$$$\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{an}\:\mathrm{elementary}\:\mathrm{antiderivative}. \\ $$…

Question-202882

Question Number 202882 by dimentri last updated on 05/Jan/24 $$\:\:\:\:\downharpoonleft\underline{\:} \\ $$ Answered by cortano12 last updated on 05/Jan/24 $$\:\:\begin{cases}{\mathrm{5}\underset{\mathrm{3}} {\overset{\mathrm{6}} {\int}}\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\mathrm{10}}\\{\mathrm{5}\underset{\mathrm{1}} {\overset{\mathrm{6}} {\int}}\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\mathrm{2}}\end{cases} \\…