Menu Close

Category: Integration

Question-179991

Question Number 179991 by mnjuly1970 last updated on 05/Nov/22 Answered by mindispower last updated on 05/Nov/22 $$=\underset{{n}\geqslant\mathrm{2}} {\sum}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{m}!}{x}^{{m}} {e}^{−{nx}} {dx}=\frac{\mathrm{1}}{{m}!}\int_{\mathrm{0}} ^{\infty} \left(\frac{{y}}{{n}}\right)^{{m}} {e}^{−{y}}…

Question-179862

Question Number 179862 by cherokeesay last updated on 03/Nov/22 Commented by CElcedricjunior last updated on 03/Nov/22 $$\begin{cases}{\boldsymbol{{y}}=\boldsymbol{{lnx}}}\\{\boldsymbol{{y}}=\mathrm{2}}\end{cases}=>\boldsymbol{{lnx}}=\mathrm{2}=>\boldsymbol{{x}}=\boldsymbol{{e}}^{\mathrm{2}} \\ $$$$\left.=\left.>\boldsymbol{{x}}\in\right]\mathrm{0};\boldsymbol{{e}}^{\mathrm{2}} \right]\:\boldsymbol{{et}}\:\boldsymbol{{y}}\in\left[\boldsymbol{{lnx}};\mathrm{2}\right] \\ $$$$\Leftrightarrow\boldsymbol{{A}}=\int_{\boldsymbol{{lnx}}} ^{\mathrm{2}} \int_{\mathrm{0}} ^{\boldsymbol{{e}}^{\mathrm{2}}…

xdx-x-1-x-2-

Question Number 179853 by AKSHAYTHAKUR last updated on 03/Nov/22 $$\int\frac{\boldsymbol{{xdx}}}{\left(\boldsymbol{{x}}−\mathrm{1}\right)\left(\boldsymbol{{x}}−\mathrm{2}\right)} \\ $$ Commented by CElcedricjunior last updated on 04/Nov/22 $$\int\:\frac{\boldsymbol{{xdx}}}{\left(\boldsymbol{{x}}−\mathrm{1}\right)\left(\boldsymbol{{x}}−\mathrm{2}\right)}=\int\left[\frac{\mathrm{1}}{\boldsymbol{{x}}−\mathrm{2}}+\frac{\mathrm{1}}{\left(\boldsymbol{{x}}−\mathrm{1}\right)\left(\boldsymbol{{x}}−\mathrm{2}\right)}\right]\boldsymbol{{dx}} \\ $$$$={ln}\mid\boldsymbol{{x}}−\mathrm{2}\mid+\int\left[−\frac{\mathrm{1}}{\boldsymbol{{x}}−\mathrm{1}}+\frac{\mathrm{1}}{\boldsymbol{{x}}−\mathrm{2}}\right]\boldsymbol{{dx}} \\ $$$$=\boldsymbol{{ln}}\mid\boldsymbol{{x}}−\mathrm{2}\mid−\boldsymbol{{ln}}\mid\boldsymbol{{x}}−\mathrm{1}\mid+\boldsymbol{{ln}}\mid\boldsymbol{{x}}−\mathrm{1}\mid \\…

prove-0-2-log-sinx-dx-pi-2-log-1-2-

Question Number 179852 by arup last updated on 03/Nov/22 $$\boldsymbol{{prove}}\:\:\:\:\:\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \boldsymbol{{log}}\left(\boldsymbol{{sinx}}\right)\boldsymbol{{dx}}=\frac{\pi}{\mathrm{2}}\boldsymbol{{log}}\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Commented by som(math1967) last updated on 03/Nov/22 $${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left[{sin}\left(\frac{\pi}{\mathrm{2}}−{x}\right)\right]{dx} \\…

1-0-x-1-x-1-lnx-dx-

Question Number 179844 by mathlove last updated on 03/Nov/22 $$\underset{\mathrm{0}} {\int}^{\mathrm{1}} \:\frac{{x}−\mathrm{1}}{\left({x}+\mathrm{1}\right){lnx}}{dx}=? \\ $$ Answered by Peace last updated on 03/Nov/22 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}−{x}^{{s}} }{\left({x}+\mathrm{1}\right){ln}\left({x}\right)}={f}\left({s}\right)…