Menu Close

Category: Integration

1-1-log-x-2-dx-

Question Number 44639 by arvinddayama01@gmail.com last updated on 02/Oct/18 $$\int\frac{\mathrm{1}}{\mathrm{1}+\left(\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\right)^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=? \\ $$$$ \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 02/Oct/18 $${t}={lnx}\:\:{x}={e}^{{t}\:\:} \:\:\:{dx}={e}^{{t}} \:\:{dt}…

0-1-3x-3-x-2-2x-4-x-2-3x-2-dx-

Question Number 175697 by Tawa11 last updated on 05/Sep/22 $$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\:\frac{\mathrm{3x}^{\mathrm{3}} \:−\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2x}\:−\:\mathrm{4}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{3x}\:+\:\mathrm{2}}}\:\mathrm{dx} \\ $$ Answered by MJS_new last updated on 05/Sep/22 $$\underset{\mathrm{0}}…

log-x-1-1-log-x-2-2-dx-x-log-x-2-1-C-

Question Number 44604 by arvinddayama01@gmail.com last updated on 02/Oct/18 $$\int\left[\frac{\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\:\:−\:\:\mathrm{1}}{\mathrm{1}+\left(\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\right)^{\mathrm{2}} }\right]^{\mathrm{2}} \boldsymbol{\mathrm{dx}}\:\:=\:\:\frac{\boldsymbol{\mathrm{x}}}{\left(\boldsymbol{\mathrm{log}}\:\boldsymbol{\mathrm{x}}\right)^{\mathrm{2}} +\mathrm{1}}+\boldsymbol{\mathrm{C}} \\ $$ Commented by prof Abdo imad last updated on 02/Oct/18 $${let}\:\varphi\left({x}\right)=\frac{{x}}{\mathrm{1}+\left({lnx}\right)^{\mathrm{2}}…

cos-1-x-1-x-2-1-log-e-1-sin-2x-1-x-2-pi-dx-

Question Number 175669 by infinityaction last updated on 04/Sep/22 $$\:\:\int\frac{\left[\mathrm{cos}^{−\mathrm{1}} {x}\left\{\sqrt{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}\right\}\right]^{−\mathrm{1}} }{\mathrm{log}_{{e}} \left\{\mathrm{1}+\left(\frac{\mathrm{sin}\left[\mathrm{2}{x}\sqrt{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}\:\right]}{\pi}\:\right\}\right.}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-44573

Question Number 44573 by Raj Singh last updated on 01/Oct/18 Commented by maxmathsup by imad last updated on 01/Oct/18 $${let}\:{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left({sin}\left(\mathrm{2}\theta\right)\right){d}\theta\:\Rightarrow\:{A}\:=_{\mathrm{2}\theta={t}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({t}\right)\right)\frac{{dt}}{\mathrm{2}}…

1-4t-3-3t-2-4t-1-dt-

Question Number 175614 by leodera last updated on 03/Sep/22 $$\int\frac{\mathrm{1}}{\mathrm{4}{t}^{\mathrm{3}} +\mathrm{3}{t}^{\mathrm{2}} +\mathrm{4}{t}+\mathrm{1}}{dt} \\ $$ Answered by ajfour last updated on 04/Sep/22 $${I}=\int\frac{{dt}}{\mathrm{4}\left({t}+{p}\right)\left({t}^{\mathrm{2}} +{qt}+{r}\right)} \\ $$$$\mathrm{4}{I}=\int\frac{{Adt}}{{t}+{p}}+\frac{\left({Bt}+{C}\right){dt}}{{t}^{\mathrm{2}}…