Menu Close

Category: Integration

0-x-5-3-x-dx-

Question Number 175343 by rexford last updated on 27/Aug/22 $$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{5}} }{\:\sqrt{\mathrm{3}−{x}}}{dx} \\ $$ Commented by BaliramKumar last updated on 28/Aug/22 $${I}\:{think}\:{Q}.\:{will}\:{be}\:\:\:\underset{\mathrm{0}} {\overset{\mathrm{3}} {\int}}\frac{\:{x}^{\mathrm{5}}…

1-x-2-2x-5-2-dx-

Question Number 44264 by pramid last updated on 25/Sep/18 $$\int\frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{5}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$ Commented by maxmathsup by imad last updated on 25/Sep/18 $${let}\:{I}\:=\:\int\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{2}{x}\:+\mathrm{5}\right)^{\mathrm{2}}…

Question-175305

Question Number 175305 by cortano1 last updated on 26/Aug/22 Answered by mr W last updated on 27/Aug/22 $${let}\:{t}=\frac{{x}}{\mathrm{6}} \\ $$$$\mathrm{6}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{36}}} \frac{\mathrm{1}−\mathrm{cos}\:\mathrm{2}{t}}{\mathrm{sin}\:\mathrm{3}{t}}{dt} \\ $$$$=\mathrm{12}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{36}}}…

find-f-a-0-dx-x-3-a-3-with-a-gt-0-2-find-g-a-0-dx-x-3-a-3-2-3-find-the-value-of-0-dx-1-x-3-2-4-find-the-value-of-0-dx-8x-3-1-

Question Number 44202 by abdo.msup.com last updated on 23/Sep/18 $${find}\:\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{3}} \:+{a}^{\mathrm{3}} }\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right){find}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{3}} \:+{a}^{\mathrm{3}} \right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}}…

let-f-x-0-1-ln-1-xt-2-t-2-dt-with-x-R-1-find-a-explicit-form-of-f-x-2-calculate-0-1-ln-1-t-2-t-2-dt-3-calculate-0-1-ln-1-2t-2-t-2-dt-4-calculate-0-1-ln-1-t-2

Question Number 44201 by abdo.msup.com last updated on 23/Sep/18 $${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt}\:\:{with}\:{x}\:\in{R} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{{t}^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right){calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}}…