Menu Close

Category: Integration

Question-47595

Question Number 47595 by ajfour last updated on 12/Nov/18 Commented by ajfour last updated on 12/Nov/18 $${Regarding}\:{Q}.\mathrm{47497}\:\left({some}\:{analysis}\right) \\ $$$${Also}\:{see}\:{diagram}\:{of}\:{Q}.\mathrm{47599}\: \\ $$$${for}\:{part}\:{of}\:{solution}\left({section}\:{A}\right). \\ $$ Commented by…

0-1-x-x-1-dx-

Question Number 113110 by gopikrishnan last updated on 11/Sep/20 $$\overset{\mathrm{1}} {\int}_{\mathrm{0}} \sqrt{{x}\left({x}−\mathrm{1}\right){dx}} \\ $$ Commented by 1549442205PVT last updated on 11/Sep/20 $$\mathrm{The}\:\mathrm{function}\:\sqrt{\mathrm{x}\left(\mathrm{x}−\mathrm{1}\right)}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{on} \\ $$$$\mathrm{set}\:\mathrm{X}=\left(−\infty,\mathrm{0}\right]\cup\left[\mathrm{1},+\infty\right)\:\mathrm{and}\:\mathrm{isn}'\mathrm{t} \\…

find-the-area-bounded-by-the-curve-y-2-x-3-and-the-lines-x-0-y-1-and-y-2-

Question Number 113111 by gopikrishnan last updated on 11/Sep/20 $${find}\:{the}\:{area}\:{bounded}\:{by}\:{the}\:{curve}\:{y}^{\mathrm{2}} ={x}^{\mathrm{3}} \:{and}\:{the}\:{lines}\:{x}=\mathrm{0}\:{y}=\mathrm{1}\:{and}\:{y}=\mathrm{2} \\ $$ Answered by 1549442205PVT last updated on 11/Sep/20 $$\mathrm{y}^{\mathrm{2}} =\mathrm{x}^{\mathrm{3}} \Leftrightarrow\mathrm{y}=\sqrt{\mathrm{x}^{\mathrm{3}} }\:.\mathrm{We}\:\mathrm{find}\:\mathrm{the}…

sin51x-sinx-49-dx-

Question Number 47566 by tanmay.chaudhury50@gmail.com last updated on 11/Nov/18 $$\int{sin}\mathrm{51}{x}\left({sinx}\right)^{\mathrm{49}} {dx} \\ $$ Answered by Smail last updated on 12/Nov/18 $${A}=\int{sin}\left(\mathrm{50}{x}+{x}\right){sin}^{\mathrm{49}} \left({x}\right){dx} \\ $$$$=\int\left({sin}\left(\mathrm{50}{x}\right){cosx}+{cos}\left(\mathrm{50}{x}\right){sin}\left({x}\right)\right){sin}^{\mathrm{49}} \left({x}\right){dx}…

Question-178550

Question Number 178550 by cortano1 last updated on 18/Oct/22 Answered by Ar Brandon last updated on 18/Oct/22 $${I}=\int_{\frac{\pi}{\mathrm{12}}} ^{\frac{\pi}{\mathrm{8}}} \frac{\left(\mathrm{7}+\mathrm{cos4}\vartheta\right)\mathrm{cos2}\vartheta}{\mathrm{1}−\mathrm{cos4}\vartheta}\left(\frac{\mathrm{9}−\mathrm{cos4}\vartheta}{\mathrm{sin2}\vartheta}\right)^{\mathrm{2021}} {d}\vartheta \\ $$$$\:\:=\int_{\frac{\pi}{\mathrm{12}}} ^{\frac{\pi}{\mathrm{8}}} \frac{\left(\mathrm{6}+\mathrm{2cos}^{\mathrm{2}}…