Menu Close

Category: Integration

1-calculate-I-0-dx-x-2-i-and-J-0-dx-x-2-i-2-find-the-value-of-0-dx-x-4-1-

Question Number 43676 by maxmathsup by imad last updated on 13/Sep/18 $$\left.\mathrm{1}\right){calculate}\:\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} −{i}}\:\:{and}\:\:{J}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+{i}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{1}} \\ $$…

Question-43657

Question Number 43657 by Tinkutara last updated on 13/Sep/18 Commented by maxmathsup by imad last updated on 24/Sep/18 $${let}\:{A}\:=\:\int\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{2}{x}\:+\mathrm{10}\right)^{\mathrm{2}} }\:{we}\:{have}\:{A}\:=\int\:\:\:\frac{{dx}}{\left\{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \:+\mathrm{9}\right\}^{\mathrm{2}} } \\ $$$${changement}\:{x}+\mathrm{1}\:=\mathrm{3}{tan}\theta\:{give}\:…

prove-that-0-x-sinh-x-3-dx-2-16-12-2-written-and-prepared-by-m-n-

Question Number 174696 by mnjuly1970 last updated on 08/Aug/22 $$ \\ $$$$\:\:\:\:\:\boldsymbol{{prove}}\:\:\boldsymbol{{that}}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\Omega}\:=\:\int_{\mathrm{0}} ^{\:\infty} \left(\:\frac{\:\boldsymbol{{x}}}{\:\boldsymbol{{sinh}}\:\left(\boldsymbol{{x}}\right)}\:\right)^{\:\mathrm{3}} \boldsymbol{{dx}}\:=\frac{\boldsymbol{\pi}^{\:\mathrm{2}} }{\mathrm{16}}\:\left(\mathrm{12}−\:\boldsymbol{\pi}^{\:\mathrm{2}} \right)\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{written}}\:\:\boldsymbol{{and}}\:\boldsymbol{{prepared}}\:\boldsymbol{{by}}\::\:\:\boldsymbol{{m}}.\boldsymbol{{n}}\:\:\:\:\:\:\:\: \\ $$$$…

let-f-x-0-x-dt-1-t-4-1-find-a-explicit-form-of-f-x-2-calculate-0-dt-1-t-4-

Question Number 43623 by math khazana by abdo last updated on 12/Sep/18 $${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$$$\left.\mathrm{1}\right)\:{find}\:\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$…

0-pi-2-ln-cos-x-ln-sin-x-tan-x-dx-

Question Number 109129 by bemath last updated on 21/Aug/20 $$\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{ln}\:\left(\mathrm{cos}\:{x}\right)\mathrm{ln}\:\left(\mathrm{sin}\:{x}\right)}{\mathrm{tan}\:{x}}\:{dx} \\ $$ Answered by EmericGent last updated on 21/Aug/20 $$=\:{I}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{ln}\left(\mathrm{1}-{sin}^{\mathrm{2}} {x}\right){ln}\left({sin}\:{x}\right)}{{sin}\:{x}}\:{cos}\:{x}\:{dx}…