Menu Close

Category: Integration

1-find-the-value-of-pi-4-pi-3-1-tan-d-

Question Number 43535 by maxmathsup by imad last updated on 11/Sep/18 $$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\sqrt{\mathrm{1}+{tan}\theta}{d}\theta\:. \\ $$ Commented by MJS last updated on 12/Sep/18 $$\mathrm{it}'\mathrm{s}\:\mathrm{possible}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{a}\:\mathrm{long}\:\mathrm{way} \\…

Question-43517

Question Number 43517 by Raj Singh last updated on 11/Sep/18 Commented by maxmathsup by imad last updated on 11/Sep/18 $${let}\:{I}\:=\:\int\:\:\frac{{x}^{\mathrm{3}} \:+\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{5}{x}\:+\mathrm{6}}\:{dx}\:\Rightarrow{I}\:=\:\int\:\:\frac{{x}\left({x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{6}\:\right)+\mathrm{5}{x}^{\mathrm{2}} −\mathrm{6}{x}\:+\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{5}{x}\:+\mathrm{6}}{dx}…

evaluate-tan-d-

Question Number 43490 by peter frank last updated on 11/Sep/18 $$\boldsymbol{\mathrm{evaluate}} \\ $$$$\int\sqrt{\boldsymbol{\mathrm{tan}\theta}\:\boldsymbol{\mathrm{d}}\theta} \\ $$ Commented by maxmathsup by imad last updated on 11/Sep/18 $${let}\:{I}\:=\int\:\sqrt{{tan}\theta}{d}\theta\:\:\:\:{changement}\:\sqrt{{tan}\theta}\:={x}\:{give}\:{tan}\theta={x}^{\mathrm{2}}…

Evaluate-0-2-e-x-e-1-x-e-x-1-dx-

Question Number 174548 by mnjuly1970 last updated on 03/Aug/22 $$ \\ $$$$\boldsymbol{{Evaluate}}\:. \\ $$$$\:\:\boldsymbol{\Omega}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \frac{\:\:\boldsymbol{{e}}^{\:\boldsymbol{{x}}} }{\boldsymbol{{e}}^{\:\mathrm{1}−\boldsymbol{{x}}} +\:\boldsymbol{{e}}^{\:\boldsymbol{{x}}−\mathrm{1}} }\:\boldsymbol{{dx}}=\:? \\ $$$$\:\:\:\: \\ $$ Answered by…

Question-108990

Question Number 108990 by shahria14 last updated on 20/Aug/20 Answered by bobhans last updated on 20/Aug/20 $$\:\:\:\:\:\frac{\flat{o}\flat{hans}}{\varsigma−−−−\varsigma} \\ $$$$\:{set}\:{x}−\mathrm{1}=\:\flat\:\rightarrow\begin{cases}{{x}=\mathrm{5}\:\rightarrow\flat=\mathrm{4}}\\{{x}=\mathrm{1}\rightarrow\flat=\mathrm{0}}\end{cases};\:{dx}\:=\:{d}\flat \\ $$$$\underset{\mathrm{1}} {\overset{\mathrm{5}} {\int}}{f}\left({x}−\mathrm{1}\right){dx}\:=\:\underset{\mathrm{0}} {\overset{\mathrm{4}} {\int}}\:{f}\left(\flat\right)\:{d}\flat\:=\:\mathrm{0}…

Evaluate-0-1-0-1-1-2-x-2-y-2-dxdy-

Question Number 108954 by mnjuly1970 last updated on 20/Aug/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathscr{E}{valuate}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}−{x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} }\:{dxdy}=???\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bigstar\bigstar\clubsuit\clubsuit\bigstar\bigstar \\ $$$$ \\ $$ Commented…

Question-43418

Question Number 43418 by Raj Singh last updated on 10/Sep/18 Answered by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18 $$\int\frac{{cosxdx}}{{sinxcosx}+\mathrm{1}} \\ $$$$\int\frac{\mathrm{2}{cosx}}{\mathrm{2}{cosxsinx}+\mathrm{2}}{dx} \\ $$$$\int\frac{{cosx}+{sinx}+{cosx}−{sinx}}{\mathrm{1}+\left({sinx}+{cosx}\right)^{\mathrm{2}} }{dx} \\ $$$$\int\frac{{cosx}−{sinx}}{\mathrm{1}+\left({sinx}+{cosx}\right)^{\mathrm{2}}…