Menu Close

Category: Integration

Question-109949

Question Number 109949 by mnjuly1970 last updated on 26/Aug/20 Answered by mathdave last updated on 26/Aug/20 solution$${I}=\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\frac{\mathrm{sin}{x}}{\mathrm{cos}{x}}+\frac{\mathrm{cos}{x}}{\mathrm{sin}{x}}\right){dx}=\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\frac{\mathrm{sin}^{\mathrm{2}} {x}+\mathrm{cos}^{\mathrm{2}} {x}}{\mathrm{cos}{x}\mathrm{sin}{x}}\right){dx}…

Question-175471

Question Number 175471 by mnjuly1970 last updated on 31/Aug/22 Answered by Ar Brandon last updated on 31/Aug/22 $$\Omega=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin2}{x}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{cos}{x}\right){dx}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}{x}\mathrm{cos}{x}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{cos}{x}\right){dx} \