Menu Close

Category: Integration

Question-218674

Question Number 218674 by Spillover last updated on 14/Apr/25 Answered by Nicholas666 last updated on 14/Apr/25 $$\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{4}} }{\:\sqrt{\mathrm{8}+\mathrm{2}{x}^{\mathrm{2}} −{x}^{\mathrm{4}} \:}}\right)\sqrt{\frac{\mathrm{2}+{x}^{\mathrm{2}} }{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}…

Prove-that-for-all-real-numbers-a-and-b-with-a-lt-b-the-following-inequality-holds-a-b-1-dx-3-b-a-a-b-x-a-1-2-dx-a-b-1-a-x-1-3-dx-

Question Number 218626 by Nicholas666 last updated on 13/Apr/25 Provethatforallrealnumbersaandbwitha<b,thefollowinginequalityholds;$$\left(\int_{{a}} ^{{b}} \mathrm{1}\:{dx}\right)^{\mathrm{3}} \leqslant\:\left({b}−{a}\right)\left(\int_{{a}} ^{{b}} \left({x}−{a}+\mathrm{1}\right)^{\mathrm{2}} {dx}\right)\left(\int_{{a}\:} ^{{b}} \frac{\mathrm{1}}{\left({a}−{x}+\mathrm{1}\right)^{\mathrm{3}} }{dx}\right)…