Question Number 201044 by mnjuly1970 last updated on 28/Nov/23 $$ \\ $$$$\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \left({x}−{y}\:\right)^{\mathrm{2}} {sin}^{\:\mathrm{2}} \:\left(\:{x}+{y}\:\right){dxdy}=? \\ $$ Answered by mathematicsmagic last updated…
Question Number 200933 by Spillover last updated on 26/Nov/23 $$ \\ $$$$\int\mathrm{coth}\:\left(\mathrm{ln}\:\left[\sqrt{\mathrm{tanh}\:\left(\mathrm{ln}\:\left(\sqrt{\mathrm{sec}^{−\mathrm{1}} \:\:\sqrt[{\mathrm{4}}]{{x}}\:\:}\right)\right)}\:\right]\right) \\ $$$$ \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 200930 by Spillover last updated on 26/Nov/23 $${If}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{4}} \right)^{{n}} {dx}\:\:{and}\:\:\frac{{I}_{{n}} }{{I}_{{n}−\mathrm{1}} }=\frac{\lambda{n}}{\lambda{n}+\mathrm{1}} \\ $$$${then}\:{find}\:\:\lambda \\ $$ Commented by mr W…
Question Number 200923 by mnjuly1970 last updated on 26/Nov/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 200915 by Rupesh123 last updated on 26/Nov/23 Answered by Frix last updated on 26/Nov/23 $$\mathrm{Assume} \\ $$$$\int\frac{\left({x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{5}}} }{{x}^{\frac{\mathrm{8}}{\mathrm{5}}} }{dx}=\frac{{p}\left({x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}\right)^{\frac{{q}}{\mathrm{5}}} }{{x}^{\frac{{r}}{\mathrm{5}}} }…
Question Number 200901 by Rupesh123 last updated on 26/Nov/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 200844 by darklord last updated on 24/Nov/23 Commented by som(math1967) last updated on 24/Nov/23 $$?? \\ $$ Commented by darklord last updated on…
Question Number 200801 by mnjuly1970 last updated on 23/Nov/23 Answered by witcher3 last updated on 24/Nov/23 $$\mathrm{introduce}\:\mathrm{erfc}\left(\mathrm{x}\right)=\frac{\mathrm{2}}{\:\sqrt{\pi}}\int_{\mathrm{0}} ^{\mathrm{x}} \mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \mathrm{dt} \\ $$$$\phi=\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}}…
Question Number 200802 by mnjuly1970 last updated on 23/Nov/23 Answered by witcher3 last updated on 23/Nov/23 $$\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \mathrm{t}^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt},\mathrm{x}^{\mathrm{2}}…
Question Number 200697 by Bayat last updated on 22/Nov/23 Answered by aleks041103 last updated on 22/Nov/23 $${sin}\left(\mathrm{2}{t}\right)=\mathrm{2}{sin}\left({t}\right){cos}\left({t}\right) \\ $$$$\Rightarrow\int\frac{{sin}\left(\mathrm{2}{t}\right)}{\mathrm{2}{sin}\left({t}\right)}{dt}=\int{cos}\left({t}\right){dt}={sin}\left({t}\right)+{C} \\ $$ Terms of Service Privacy…