Menu Close

Category: Integration

Question-200915

Question Number 200915 by Rupesh123 last updated on 26/Nov/23 Answered by Frix last updated on 26/Nov/23 $$\mathrm{Assume} \\ $$$$\int\frac{\left({x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{5}}} }{{x}^{\frac{\mathrm{8}}{\mathrm{5}}} }{dx}=\frac{{p}\left({x}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{1}\right)^{\frac{{q}}{\mathrm{5}}} }{{x}^{\frac{{r}}{\mathrm{5}}} }…

Question-200801

Question Number 200801 by mnjuly1970 last updated on 23/Nov/23 Answered by witcher3 last updated on 24/Nov/23 $$\mathrm{introduce}\:\mathrm{erfc}\left(\mathrm{x}\right)=\frac{\mathrm{2}}{\:\sqrt{\pi}}\int_{\mathrm{0}} ^{\mathrm{x}} \mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \mathrm{dt} \\ $$$$\phi=\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}}…

Question-200802

Question Number 200802 by mnjuly1970 last updated on 23/Nov/23 Answered by witcher3 last updated on 23/Nov/23 $$\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \mathrm{t}^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt},\mathrm{x}^{\mathrm{2}}…

Question-200697

Question Number 200697 by Bayat last updated on 22/Nov/23 Answered by aleks041103 last updated on 22/Nov/23 $${sin}\left(\mathrm{2}{t}\right)=\mathrm{2}{sin}\left({t}\right){cos}\left({t}\right) \\ $$$$\Rightarrow\int\frac{{sin}\left(\mathrm{2}{t}\right)}{\mathrm{2}{sin}\left({t}\right)}{dt}=\int{cos}\left({t}\right){dt}={sin}\left({t}\right)+{C} \\ $$ Terms of Service Privacy…