Question Number 43064 by abdo.msup.com last updated on 07/Sep/18 Commented by behi83417@gmail.com last updated on 07/Sep/18 $${hi}\:{mr}.{prop}.\:{abdo}.\:{glad}\:{to}\:{see}\:{you}. \\ $$$${good}\:{luck}. \\ $$ Commented by abdo.msup.com last…
Question Number 108597 by bemath last updated on 18/Aug/20 $$\:\:\:\:\:\frac{\angle\:\mathcal{B}{e}\mathcal{M}{ath}\angle}{\nparallel} \\ $$$$\left(\mathrm{1}\right)\:\int\:\mathrm{cos}\:\left(\mathrm{ln}\:{x}\right)\:{dx}\: \\ $$$$\left(\mathrm{2}\right)\:\int\:\mathrm{sin}\:\left(\mathrm{ln}\:{x}\right)\:{dx}\: \\ $$ Answered by 1549442205PVT last updated on 18/Aug/20 $$\mathrm{Set}\:\mathrm{I}=\int\mathrm{cos}\left(\mathrm{lnx}\right)\mathrm{dx},\mathrm{J}=\int\mathrm{sin}\left(\mathrm{lnx}\right)\mathrm{dx} \\…
Question Number 43058 by maxmathsup by imad last updated on 06/Sep/18 $${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{x}\:{sin}\left(\frac{\pi{x}}{\mathrm{2}}\right)}{\left\{\mathrm{1}+\left({x}+\mathrm{1}\right)^{\mathrm{2}} \right\}\left\{\mathrm{1}+\left({x}−\mathrm{1}\right)^{\mathrm{2}} \right\}}{dx} \\ $$ Commented by maxmathsup by imad last updated…
Question Number 43057 by maxmathsup by imad last updated on 06/Sep/18 $${find}\:{the}\:{value}\:{of}\:\:\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\pi{x}^{\mathrm{2}} \right)\:−{sin}\left(\pi{x}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$ Commented by maxmathsup by imad…
Question Number 108593 by Rasikh last updated on 18/Aug/20 Answered by Her_Majesty last updated on 18/Aug/20 $$\left(−\mathrm{1}\right)^{{x}} ={e}^{{xln}\left(−\mathrm{1}\right)} ={e}^{{i}\pi{x}} ={cos}\pi{x}+{isin}\pi{x} \\ $$$$\Rightarrow\:\int\left(−\mathrm{1}\right)^{{x}} {dx}=\frac{\mathrm{1}}{\pi}\left({sin}\pi{x}−{icos}\pi{x}\right)+{C} \\ $$…
Question Number 108584 by mathmax by abdo last updated on 17/Aug/20 $$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}+\mathrm{2}}\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 108582 by mathmax by abdo last updated on 17/Aug/20 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$ Answered by mnjuly1970 last updated on 18/Aug/20 $$\mathrm{x}=\mathrm{tan}\left(\mathrm{t}\right)\Rightarrow\:\Omega=\int_{\mathrm{0}}…
Question Number 174117 by Mathspace last updated on 25/Jul/22 $${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{\mathrm{1}+{x}^{{n}} }\:{interms}\:{of} \\ $$$$\psi\:\left({digamma}\right) \\ $$ Answered by Mathspace last updated on 25/Jul/22 $$\int_{\mathrm{0}}…
Question Number 174118 by Mathspace last updated on 25/Jul/22 $${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:{by}\:{using} \\ $$$$\psi\:\:\left({digamma}\right) \\ $$ Answered by mnjuly1970 last updated on 25/Jul/22 $$\:\:\:\underset{{n}=\mathrm{1}}…
Question Number 108583 by mathmax by abdo last updated on 17/Aug/20 $$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$ Answered by mnjuly1970 last updated on 18/Aug/20…