Menu Close

Category: Integration

Question-45885

Question Number 45885 by Meritguide1234 last updated on 17/Oct/18 Commented by maxmathsup by imad last updated on 18/Oct/18 $${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{n}\left(\mathrm{1}−\left({sinx}\right)^{\frac{\mathrm{1}}{{n}}} \right){dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{f}_{{n}}…

some-practice-for-the-brave-cos-2-x-sin-2-x-cos-x-sin-x-dx-cos-2-x-tan-2-x-cos-x-tan-x-dx-sin-2-x-tan-2-x-sin-x-tan-x-dx-

Question Number 45802 by MJS last updated on 17/Oct/18 $$\mathrm{some}\:\mathrm{practice}\:\mathrm{for}\:\mathrm{the}\:\mathrm{brave}… \\ $$$$\int\frac{\mathrm{cos}^{\mathrm{2}} \:{x}\:\mathrm{sin}^{\mathrm{2}} \:{x}}{\mathrm{cos}\:{x}\:+\mathrm{sin}\:{x}}{dx}=? \\ $$$$\int\frac{\mathrm{cos}^{\mathrm{2}} \:{x}\:\mathrm{tan}^{\mathrm{2}} \:{x}}{\mathrm{cos}\:{x}\:+\mathrm{tan}\:{x}}{dx}=? \\ $$$$\int\frac{\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{tan}^{\mathrm{2}} \:{x}}{\mathrm{sin}\:{x}\:+\mathrm{tan}\:{x}}{dx}=? \\ $$ Commented…

find-dx-cosx-sin-2-x-

Question Number 45795 by maxmathsup by imad last updated on 16/Oct/18 $${find}\:\int\:\frac{{dx}}{{cosx}\:{sin}^{\mathrm{2}} {x}} \\ $$ Answered by MJS last updated on 17/Oct/18 $$\frac{\mathrm{1}}{\mathrm{cos}\:{x}\:\mathrm{sin}^{\mathrm{2}} \:{x}}=\left(\mathrm{1}+\frac{\mathrm{cos}^{\mathrm{2}} \:{x}}{\mathrm{sin}^{\mathrm{2}}…

find-f-x-0-cos-x-t-2-dtand-g-x-0-sin-x-t-2-dt-2-find-the-value-of-f-x-and-g-x-

Question Number 45771 by maxmathsup by imad last updated on 16/Oct/18 $${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}+{t}^{\mathrm{2}} \right){dtand}\:{g}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}+{t}^{\mathrm{2}} \right){dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:{f}^{'} \left({x}\right)\:{and}\:{g}^{'} \left({x}\right). \\ $$ Answered…

Question-45706

Question Number 45706 by Meritguide1234 last updated on 15/Oct/18 Answered by tanmay.chaudhury50@gmail.com last updated on 17/Oct/18 $${trying}\:{to}\:{solve}… \\ $$$$\int\frac{\left(\mathrm{1}+{x}^{\mathrm{4}} \right)}{\left(\mathrm{1}−{x}^{\mathrm{4}} \right)\sqrt{\mathrm{1}+{x}^{\mathrm{4}} }\:}{dx} \\ $$$$\int\frac{\mathrm{1}+{x}^{\mathrm{4}} }{{x}^{\mathrm{2}}…