Question Number 42502 by maxmathsup by imad last updated on 26/Aug/18 $${calculate}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{cos}\left({nx}\right)}{{cosx}\:+{sinx}}{dx}\:\:{with}\:{n}\:{from}\:{N} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 42500 by maxmathsup by imad last updated on 26/Aug/18 $${calculate}\:\:\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}\left(\mathrm{2}{x}\right)}{{cosx}\:+{sinx}}{dx}\:{and}\:{J}\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{sin}\left(\mathrm{2}{x}\right)}{{cosx}\:+{sinx}}{dx} \\ $$ Commented by maxmathsup by imad last updated…
Question Number 42490 by maxmathsup by imad last updated on 26/Aug/18 $${find}\:{L}\left({arctanx}\right)\:\:.{L}\:{means}\:{laplace}\:{transform}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 42488 by maxmathsup by imad last updated on 26/Aug/18 $${find}\:\:\int\:\:\:\left(\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right){arctan}\left({t}−\frac{\mathrm{1}}{{t}}\right){dt}\:. \\ $$ Commented by maxmathsup by imad last updated on 27/Aug/18 $${by}\:{parts}\:{u}^{'}…
Question Number 42489 by maxmathsup by imad last updated on 26/Aug/18 $${calculate}\:{L}\:\left({sinxe}^{−{ax}} \right)\:\:\:{with}\:{a}>\mathrm{0}\:\:{L}\:{means}\:{laplace}\:{transform}\:. \\ $$ Commented by maxmathsup by imad last updated on 27/Aug/18 $${L}\left({sinx}\:{e}^{−{ax}}…
Question Number 173557 by Physicien last updated on 13/Jul/22 Commented by Toukir last updated on 13/Jul/22 nyc Commented by Physicien last updated on 13/Jul/22 $${what}?…
Question Number 42487 by maxmathsup by imad last updated on 26/Aug/18 $${let}\:\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\:\frac{{dt}}{{x}\:+{ch}\left({t}\right)} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicite}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{calculate}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\left({x}+{ch}\left({t}\right)\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dt}}{\mathrm{1}+{ch}\left({t}\right)}\:{and}\:\:\int_{\mathrm{0}}…
Question Number 42481 by maxmathsup by imad last updated on 26/Aug/18 $${find}\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{xtant}\right){dt}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 173523 by Physicien last updated on 13/Jul/22 Answered by Mathspace last updated on 13/Jul/22 $${I}=\int\:\:\frac{\mathrm{1}+\sqrt{{x}}−\sqrt{\mathrm{1}+{x}}}{\left(\mathrm{1}+\sqrt{{x}}\right)^{\mathrm{2}} −\mathrm{1}−{x}}{dx} \\ $$$$=\int\:\:\frac{\mathrm{1}+\sqrt{{x}}−\sqrt{\mathrm{1}+{x}}}{\mathrm{1}+\mathrm{2}\sqrt{{x}}+{x}−\mathrm{1}−{x}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{1}+\sqrt{{x}}}{\:\sqrt{{x}}}{dx}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\sqrt{\mathrm{1}+{x}}}{\:\sqrt{{x}}}{dx} \\ $$$${we}\:{have}\:\int\frac{\mathrm{1}+\sqrt{{x}}}{\:\sqrt{{x}}}{dx}=\int\frac{{dx}}{\:\sqrt{{x}}}\:+\int{dx} \\…
Question Number 42445 by maxmathsup by imad last updated on 25/Aug/18 $${find}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:{tan}^{{n}} {t}\:{dt}\:\:\:{with}\:{n}\:{integer}\:{natural}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com