Menu Close

Category: Integration

Question-108723

Question Number 108723 by 150505R last updated on 18/Aug/20 Commented by bemath last updated on 19/Aug/20 I=π/20ln(2cos(xπ4))dx$$\:=\:\left[\:{x}\:\mathrm{ln}\:\left(\sqrt{\mathrm{2}}\right)\:\right]_{\mathrm{0}} ^{\pi/\mathrm{2}} +\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\mathrm{ln}\:\left(\mathrm{cos}\:\:\left({x}−\frac{\pi}{\mathrm{4}}\right)\right){dx}…

Question-108697

Question Number 108697 by 150505R last updated on 18/Aug/20 Answered by mathmax by abdo last updated on 18/Aug/20 $$\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(\mathrm{lnx}\right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:\Rightarrow\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(\mathrm{lnx}\right)^{\mathrm{2}}…