Question Number 44575 by Raj Singh last updated on 01/Oct/18 Commented by $@ty@m last updated on 01/Oct/18 $${similar}\:{to}\:{Q}.\:{No}.\:\mathrm{41703} \\ $$ Commented by Raj Singh last…
Question Number 44573 by Raj Singh last updated on 01/Oct/18 Commented by maxmathsup by imad last updated on 01/Oct/18 $${let}\:{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left({sin}\left(\mathrm{2}\theta\right)\right){d}\theta\:\Rightarrow\:{A}\:=_{\mathrm{2}\theta={t}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({t}\right)\right)\frac{{dt}}{\mathrm{2}}…
Question Number 175614 by leodera last updated on 03/Sep/22 $$\int\frac{\mathrm{1}}{\mathrm{4}{t}^{\mathrm{3}} +\mathrm{3}{t}^{\mathrm{2}} +\mathrm{4}{t}+\mathrm{1}}{dt} \\ $$ Answered by ajfour last updated on 04/Sep/22 $${I}=\int\frac{{dt}}{\mathrm{4}\left({t}+{p}\right)\left({t}^{\mathrm{2}} +{qt}+{r}\right)} \\ $$$$\mathrm{4}{I}=\int\frac{{Adt}}{{t}+{p}}+\frac{\left({Bt}+{C}\right){dt}}{{t}^{\mathrm{2}}…
Question Number 175602 by cortano1 last updated on 03/Sep/22 $$\:\int\:\frac{\mathrm{dx}}{\mathrm{csc}\:\mathrm{x}+\:\mathrm{cos}\:\mathrm{x}}\:=? \\ $$ Commented by infinityaction last updated on 04/Sep/22 $$\:\:\int\frac{\mathrm{2}\boldsymbol{\mathrm{sin}{x}}\:}{\mathrm{2}+\mathrm{2}\boldsymbol{\mathrm{sin}{x}}.\boldsymbol{\mathrm{cos}{x}}\:}\boldsymbol{{dx}} \\ $$$${I}\:=\underset{\Psi} {\int}\frac{\left(\boldsymbol{\mathrm{sin}{x}}+\boldsymbol{\mathrm{cos}{x}}\right)\:\:\boldsymbol{{dx}}}{\:\:\mathrm{3}−\left(\boldsymbol{\mathrm{sin}{x}}−\boldsymbol{\mathrm{cos}{x}}\right)^{\mathrm{2}} \:\:}+\int_{\Phi} \frac{\left(\boldsymbol{\mathrm{sin}{x}}\:−\boldsymbol{\mathrm{cos}{x}}\right)\:\boldsymbol{{dx}}}{\mathrm{1}+\left(\boldsymbol{\mathrm{sin}{x}}+\boldsymbol{\mathrm{cos}{x}}\right)^{\mathrm{2}}…
Question Number 44515 by maxmathsup by imad last updated on 30/Sep/18 $${let}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{ln}\left({t}\right){dt}}{\left(\mathrm{1}+{xt}\right)^{\mathrm{3}} }\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{give}\:{a}\:{explicit}\:{form}\:{of}\:{g}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{3}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty}…
Question Number 175583 by Linton last updated on 03/Sep/22 $$\int_{\mathrm{0}} ^{\mathrm{2}} {x}^{{t}} {dt}=\mathrm{3} \\ $$$${solve}\:{for}\:{x} \\ $$ Commented by mr W last updated on 03/Sep/22…
Question Number 44512 by arvinddayama01@gmail.com last updated on 30/Sep/18 $$\boldsymbol{{prove}}\:\boldsymbol{{that}}:−\int\mathrm{2}^{\boldsymbol{\mathrm{ln}}\:\boldsymbol{\mathrm{x}}} \:\boldsymbol{\mathrm{dx}}\:=\:\frac{\boldsymbol{\mathrm{x}}.\mathrm{2}^{\boldsymbol{\mathrm{ln}}\:\boldsymbol{\mathrm{x}}} }{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{xe}}\right)}\:+\boldsymbol{\mathrm{C}} \\ $$$$ \\ $$ Commented by maxmathsup by imad last updated on 30/Sep/18…
Question Number 44509 by arvinddayama01@gmail.com last updated on 30/Sep/18 $$\int\sqrt{\boldsymbol{\mathrm{tan}}\:\boldsymbol{\mathrm{x}}}\:\:\boldsymbol{\mathrm{dx}}=? \\ $$ Commented by maxmathsup by imad last updated on 30/Sep/18 $${this}\:{integral}\:{is}\:{solved}\:\:{look}\:\:{at}\:{the}\:{platform}\:… \\ $$ Answered…
Question Number 44508 by arvinddayama01@gmail.com last updated on 30/Sep/18 $$\int\sqrt{\boldsymbol{\mathrm{sin}}\:\boldsymbol{\mathrm{x}}\:}\boldsymbol{\mathrm{dx}}=? \\ $$ Commented by MJS last updated on 01/Oct/18 $$\mathrm{please}\:\mathrm{go}\:\mathrm{to}\:\mathrm{question}\:\mathrm{42945}\:\mathrm{and}\:\mathrm{read}\:\mathrm{all}\:\mathrm{the} \\ $$$$\mathrm{answers}\:\mathrm{and}\:\mathrm{comments}.\:\mathrm{the}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{there} \\ $$ Answered…
Question Number 175573 by BHOOPENDRA last updated on 02/Sep/22 Terms of Service Privacy Policy Contact: info@tinkutara.com