Menu Close

Category: Integration

f-integrable-continue-on-a-b-let-m-inf-f-x-and-M-sup-f-x-x-a-b-prove-that-b-a-2-a-b-f-x-dx-a-b-dx-f-x-b-a-2-4-m-M-2-mM-

Question Number 107283 by mathmax by abdo last updated on 09/Aug/20 $$\mathrm{f}\:\mathrm{integrable}\:\mathrm{continue}\:\mathrm{on}\:\left[\mathrm{a},\mathrm{b}\right]\:\mathrm{let}\:\mathrm{m}\:=\mathrm{inf}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{M}=\mathrm{sup}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\left(\mathrm{x}\:\in\left[\mathrm{a},\mathrm{b}\right]\:\mathrm{prove}\:\mathrm{that}\:\:\:\:\:\:\:\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} \leqslant\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}×\int_{\mathrm{a}} ^{\mathrm{b}} \:\frac{\mathrm{dx}}{\mathrm{f}\left(\mathrm{x}\right)}\leqslant\frac{\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} }{\mathrm{4}}\frac{\left(\mathrm{m}+\mathrm{M}\right)^{\mathrm{2}} }{\mathrm{mM}}\right. \\ $$ Terms of…

Question-172818

Question Number 172818 by Mikenice last updated on 01/Jul/22 Answered by FelipeLz last updated on 02/Jul/22 $${x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\:=\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \\ $$$${I}\:=\:\int\frac{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}}…

Question-172819

Question Number 172819 by Mikenice last updated on 01/Jul/22 Answered by CElcedricjunior last updated on 02/Jul/22 $$\int\boldsymbol{\mathrm{x}}^{\frac{\mathrm{3}}{\mathrm{2}}} \boldsymbol{\mathrm{arctan}}\left(\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)\boldsymbol{\mathrm{dx}}=\boldsymbol{\mathrm{k}} \\ $$$$\left.\boldsymbol{\mathrm{posons}}\:\right)\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{2}}} =\boldsymbol{\mathrm{a}}=>\boldsymbol{\mathrm{dx}}=\boldsymbol{\mathrm{ada}} \\ $$$$\boldsymbol{\mathrm{k}}=\int\boldsymbol{\mathrm{a}}^{\mathrm{4}} \boldsymbol{\mathrm{arctan}}\left(\boldsymbol{\mathrm{a}}\right)\boldsymbol{\mathrm{da}}…

Question-172784

Question Number 172784 by dragan91 last updated on 01/Jul/22 Answered by Eulerian last updated on 01/Jul/22 $$\: \\ $$$$\:\mathrm{Using}\:\mathrm{King}\:\mathrm{rule}\:\mathrm{of}\:\mathrm{integration}: \\ $$$$\:\int_{\mathrm{1}} ^{\:\mathrm{2006}} \:\mathrm{arctan}\left(\frac{\left(\mathrm{2007}−\mathrm{x}\right)\:−\:\mathrm{arctan}\left(\mathrm{2007}−\mathrm{x}\right)}{\mathrm{x}\:−\:\mathrm{arctan}\left(\mathrm{x}\right)}\right)\:\mathrm{dx} \\ $$$$\:=\:\int_{\mathrm{1}}…

Question-Why-0-pi-2-2-x-1-sin-3-x-2-x-1-sin-3-x-cos-3-x-lt-pi-8-M-N-

Question Number 107245 by mnjuly1970 last updated on 09/Aug/20 $$\:\:\:\:\:\:\:\:\clubsuit\:\mathscr{Q}{uestion}\clubsuit \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{W}{hy}\:??? \\ $$$$….\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\left(\mathrm{2}^{{x}} −\mathrm{1}\right){sin}^{\mathrm{3}} \left({x}\right)}{\left(\mathrm{2}^{{x}} +\mathrm{1}\right)\left({sin}^{\mathrm{3}} \left({x}\right)+{cos}^{\mathrm{3}} \left({x}\right)\right)}\:}<\frac{\pi}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:….\mathscr{M}.\mathscr{N}…. \\ $$…