Menu Close

Category: Integration

0-ln-1-x-x-2-dx-

Question Number 172764 by Mathematification last updated on 01/Jul/22 $$\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}\right)^{\mathrm{2}} \:\mathrm{dx}=\:? \\ $$ Answered by Mathspace last updated on 01/Jul/22 $$\Upsilon=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}^{\mathrm{2}}…

let-f-x-0-1-ln-1-t-xt-2-dt-1-calculate-f-x-then-find-a-simple-form-of-f-x-2-calculate-0-1-ln-1-t-t-2-dt-3-calculate-0-1-ln-1-t-3-dt-

Question Number 41679 by math khazana by abdo last updated on 11/Aug/18 $${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{t}\:+{xt}^{\mathrm{2}} \right){dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{'} \left({x}\right)\:{then}\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{t}\:+{t}^{\mathrm{2}} \right){dt} \\…

Question-41675

Question Number 41675 by Raj Singh last updated on 11/Aug/18 Commented by math khazana by abdo last updated on 12/Aug/18 $${I}\:=\:\int\:\:\:\:\frac{{dx}}{\mathrm{1}+\frac{{cosx}}{{sinx}}}\:=\:\int\:\:\:\frac{{sinx}}{{sinx}\:+{cosx}}\:{dx} \\ $$$$=_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}} \:\:\:\int\:\:\:\:\frac{\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}{\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}}…

calculate-A-0-pi-4-cos-8-xdx-and-B-0-pi-4-sin-8-xdx-2-calculate-A-B-and-A-B-3-calculate-A-2-B-2-

Question Number 41677 by math khazana by abdo last updated on 11/Aug/18 $${calculate}\:{A}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{cos}^{\mathrm{8}} {xdx}\:{and}\: \\ $$$${B}=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{sin}^{\mathrm{8}} {xdx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{A}\:+{B}\:{and}\:{A}−{B} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:{A}^{\mathrm{2}}…

JS-0-pi-6-sin-2-6x-cos-4-3x-dx-by-using-the-Gamma-function-

Question Number 107197 by john santu last updated on 09/Aug/20 $$\:\:\:\:\:\trianglerighteq\mathrm{JS}\trianglelefteq \\ $$$$\int\overset{\:\pi/\mathrm{6}} {\:}_{\mathrm{0}} \mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{6x}\right)\:\mathrm{cos}\:^{\mathrm{4}} \left(\mathrm{3x}\right)\:\mathrm{dx}\:? \\ $$$$\left[\:\mathrm{by}\:\mathrm{using}\:\mathrm{the}\:\mathcal{G}\mathrm{amma}\:\mathrm{function}\:\right] \\ $$ Terms of Service Privacy…