Menu Close

Category: Integration

let-f-x-0-1-ln-1-xt-2-1-t-2-dt-1-find-a-simple-form-of-f-x-2-calculate-0-1-ln-1-t-2-1-t-2-dt-3-calculate-0-1-ln-1-2t-2-1-t-2-dt-

Question Number 41762 by math khazana by abdo last updated on 12/Aug/18 $${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}…

let-x-R-1-1-explicit-the-function-f-x-0-2pi-ln-x-2-2xcos-1-d-

Question Number 107291 by mathmax by abdo last updated on 09/Aug/20 $$\mathrm{let}\:\mathrm{x}\in\mathrm{R}−\left\{\mathrm{1},−\mathrm{1}\right\}\:\mathrm{explicit}\:\mathrm{the}\:\mathrm{function} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\mathrm{ln}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2xcos}\theta\:+\mathrm{1}\right)\mathrm{d}\theta \\ $$$$ \\ $$ Answered by Ar Brandon…

let-f-n-x-ne-nx-calculate-lim-n-0-1-f-n-x-dx-and-0-1-lim-n-f-n-x-dx-is-the-convergence-uniform-on-0-1-

Question Number 107286 by mathmax by abdo last updated on 09/Aug/20 $$\mathrm{let}\:\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:=\mathrm{ne}^{−\mathrm{nx}} \:\:\mathrm{calculate}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\mathrm{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{dx}\:\:\mathrm{is}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{uniform}\:\mathrm{on}\:\left[\mathrm{0},\mathrm{1}\right]? \\…

Question-172823

Question Number 172823 by Mikenice last updated on 01/Jul/22 Answered by thfchristopher last updated on 03/Jul/22 $$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{cot}^{−\mathrm{1}} \left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right){dx} \\ $$$$=\left[{x}\mathrm{cot}^{−\mathrm{1}} \left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)\right]_{\mathrm{0}}…

f-integrable-continue-on-a-b-let-m-inf-f-x-and-M-sup-f-x-x-a-b-prove-that-b-a-2-a-b-f-x-dx-a-b-dx-f-x-b-a-2-4-m-M-2-mM-

Question Number 107283 by mathmax by abdo last updated on 09/Aug/20 $$\mathrm{f}\:\mathrm{integrable}\:\mathrm{continue}\:\mathrm{on}\:\left[\mathrm{a},\mathrm{b}\right]\:\mathrm{let}\:\mathrm{m}\:=\mathrm{inf}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{M}=\mathrm{sup}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\left(\mathrm{x}\:\in\left[\mathrm{a},\mathrm{b}\right]\:\mathrm{prove}\:\mathrm{that}\:\:\:\:\:\:\:\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} \leqslant\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}×\int_{\mathrm{a}} ^{\mathrm{b}} \:\frac{\mathrm{dx}}{\mathrm{f}\left(\mathrm{x}\right)}\leqslant\frac{\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} }{\mathrm{4}}\frac{\left(\mathrm{m}+\mathrm{M}\right)^{\mathrm{2}} }{\mathrm{mM}}\right. \\ $$ Terms of…

Question-172818

Question Number 172818 by Mikenice last updated on 01/Jul/22 Answered by FelipeLz last updated on 02/Jul/22 $${x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\:=\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \\ $$$${I}\:=\:\int\frac{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}}…

Question-172819

Question Number 172819 by Mikenice last updated on 01/Jul/22 Answered by CElcedricjunior last updated on 02/Jul/22 $$\int\boldsymbol{\mathrm{x}}^{\frac{\mathrm{3}}{\mathrm{2}}} \boldsymbol{\mathrm{arctan}}\left(\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)\boldsymbol{\mathrm{dx}}=\boldsymbol{\mathrm{k}} \\ $$$$\left.\boldsymbol{\mathrm{posons}}\:\right)\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{2}}} =\boldsymbol{\mathrm{a}}=>\boldsymbol{\mathrm{dx}}=\boldsymbol{\mathrm{ada}} \\ $$$$\boldsymbol{\mathrm{k}}=\int\boldsymbol{\mathrm{a}}^{\mathrm{4}} \boldsymbol{\mathrm{arctan}}\left(\boldsymbol{\mathrm{a}}\right)\boldsymbol{\mathrm{da}}…