Menu Close

Category: Integration

Question-172784

Question Number 172784 by dragan91 last updated on 01/Jul/22 Answered by Eulerian last updated on 01/Jul/22 $$\: \\ $$$$\:\mathrm{Using}\:\mathrm{King}\:\mathrm{rule}\:\mathrm{of}\:\mathrm{integration}: \\ $$$$\:\int_{\mathrm{1}} ^{\:\mathrm{2006}} \:\mathrm{arctan}\left(\frac{\left(\mathrm{2007}−\mathrm{x}\right)\:−\:\mathrm{arctan}\left(\mathrm{2007}−\mathrm{x}\right)}{\mathrm{x}\:−\:\mathrm{arctan}\left(\mathrm{x}\right)}\right)\:\mathrm{dx} \\ $$$$\:=\:\int_{\mathrm{1}}…

Question-Why-0-pi-2-2-x-1-sin-3-x-2-x-1-sin-3-x-cos-3-x-lt-pi-8-M-N-

Question Number 107245 by mnjuly1970 last updated on 09/Aug/20 $$\:\:\:\:\:\:\:\:\clubsuit\:\mathscr{Q}{uestion}\clubsuit \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{W}{hy}\:??? \\ $$$$….\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\left(\mathrm{2}^{{x}} −\mathrm{1}\right){sin}^{\mathrm{3}} \left({x}\right)}{\left(\mathrm{2}^{{x}} +\mathrm{1}\right)\left({sin}^{\mathrm{3}} \left({x}\right)+{cos}^{\mathrm{3}} \left({x}\right)\right)}\:}<\frac{\pi}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:….\mathscr{M}.\mathscr{N}…. \\ $$…

0-ln-1-x-x-2-dx-

Question Number 172764 by Mathematification last updated on 01/Jul/22 $$\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}\right)^{\mathrm{2}} \:\mathrm{dx}=\:? \\ $$ Answered by Mathspace last updated on 01/Jul/22 $$\Upsilon=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}^{\mathrm{2}}…

let-f-x-0-1-ln-1-t-xt-2-dt-1-calculate-f-x-then-find-a-simple-form-of-f-x-2-calculate-0-1-ln-1-t-t-2-dt-3-calculate-0-1-ln-1-t-3-dt-

Question Number 41679 by math khazana by abdo last updated on 11/Aug/18 $${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{t}\:+{xt}^{\mathrm{2}} \right){dt} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{'} \left({x}\right)\:{then}\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{t}\:+{t}^{\mathrm{2}} \right){dt} \\…