Question Number 41301 by math khazana by abdo last updated on 05/Aug/18 $${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{ax}} {ln}\left(\mathrm{1}+{e}^{−{bx}} \right){dx}\:{with}\:{a}>\mathrm{0}\:{and} \\ $$$${b}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\frac{\partial{f}}{\partial{a}}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\frac{\partial{f}}{\partial{b}}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}}…
Question Number 172353 by Mikenice last updated on 25/Jun/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 172355 by Mikenice last updated on 25/Jun/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 172352 by Mikenice last updated on 25/Jun/22 Answered by Mathspace last updated on 26/Jun/22 $$\int_{\mathrm{0}} ^{\infty} \:{x}^{\mathrm{6}} {e}^{−{x}} {cosx}\:{dx}={Re}\left(\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{6}} {e}^{−{x}+{ix}} {dx}\right)\:…
Question Number 41280 by math khazana by abdo last updated on 04/Aug/18 $${find}\:\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{arctan}\left({xt}^{\mathrm{2}} \right){dt} \\ $$ Commented by math khazana by abdo last…
Question Number 41279 by math khazana by abdo last updated on 04/Aug/18 $${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:{arctan}\left({xt}^{\mathrm{2}} \right){dt}\:. \\ $$$${find}\:\:{a}\:{explicite}\:{form}\:{of}\:{f}^{'} \left({x}\right) \\ $$ Commented by maxmathsup by…
Question Number 172351 by Mikenice last updated on 25/Jun/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 106809 by Study last updated on 07/Aug/20 $$\int{e}^{\mathrm{2}{x}} {sine}^{{x}} {dx}=?? \\ $$ Answered by bemath last updated on 07/Aug/20 $$\:\:\:\:\:@\mathrm{bemath}@ \\ $$$$\int\:\mathrm{e}^{\mathrm{x}\:} \mathrm{sin}\:\left(\mathrm{e}^{\mathrm{x}}…
Question Number 41273 by prof Abdo imad last updated on 04/Aug/18 $${find}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{+\infty} \:{arctan}\left({xt}^{\mathrm{2}} \right){dt}\:\:{with}\:{x}\:{fromR}\:. \\ $$ Commented by MJS last updated on 04/Aug/18 $$\mathrm{I}\:\mathrm{think}\:\mathrm{this}\:\mathrm{integral}\:\mathrm{is}\:\mathrm{divergent}…
Question Number 106808 by Study last updated on 07/Aug/20 $$\int{tan}\left({lnx}\right){dx}=??? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com