Question Number 41135 by math khazana by abdo last updated on 02/Aug/18 $${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({xt}\right){dt}\:\:{x}\:{from}\:{R}\: \\ $$ Answered by math khazana by abdo last updated…
Question Number 172188 by Mikenice last updated on 23/Jun/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 172191 by Mikenice last updated on 23/Jun/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 41084 by Tawa1 last updated on 01/Aug/18 $$\int\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{6}} \:+\:\mathrm{1}}\:\mathrm{dx} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18 $$\int\frac{{x}^{\mathrm{3}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{4}} −{x}^{\mathrm{2}}…
Question Number 41078 by Necxx last updated on 01/Aug/18 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{sin}\:{x}\:+\:\mathrm{2cos}\:{x}}{\mathrm{3sin}\:{x}\:+\:\mathrm{4cos}\:{x}}{dx} \\ $$ Commented by maxmathsup by imad last updated on 01/Aug/18 $${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 41053 by turbo msup by abdo last updated on 01/Aug/18 $${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{6}} {x}\:{dx}\:{and} \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{6}} {xdx} \\ $$$$\left.\mathrm{1}\right){cslculate}\:{I}\:+{J}\:\:{and}\:{I}−{J} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:{I}\:{and}\:{J}…
Question Number 41054 by turbo msup by abdo last updated on 01/Aug/18 $${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{x}^{\mathrm{2}} }{{sin}^{\mathrm{2}} {x}}{dx}\:. \\ $$ Commented by maxmathsup by imad last…
Question Number 41052 by turbo msup by abdo last updated on 01/Aug/18 $${find}\:{the}\:{value}\:{of}\:\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{x}}{\mathrm{1}+{cos}^{\mathrm{2}} {x}}{dxr} \\ $$ Commented by maxmathsup by imad last updated…
Question Number 106583 by bemath last updated on 06/Aug/20 $$\:\:\:\:\:\:\:\:\:\:\:@\mathrm{bemath}@ \\ $$$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{sin}\:\mathrm{x}\:\mathrm{dx}}{\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}\:=? \\ $$ Answered by bobhans last updated on 06/Aug/20 $$\mathrm{let}\:{a}\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}}…
Question Number 41049 by prof Abdo imad last updated on 01/Aug/18 $${calculate}\:\:\:\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\frac{{x}^{\mathrm{2}} }{{cos}^{\mathrm{2}} {x}}{dx} \\ $$ Commented by maxmathsup by imad last updated…