Menu Close

Category: Integration

let-f-n-x-ne-nx-calculate-lim-n-0-1-f-n-x-dx-and-0-1-lim-n-f-n-x-dx-is-the-convergence-uniform-on-0-1-

Question Number 107286 by mathmax by abdo last updated on 09/Aug/20 letfn(x)=nenxcalculatelimn+01fn(x)dx$$\mathrm{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{dx}\:\:\mathrm{is}\:\mathrm{the}\:\mathrm{convergence}\:\mathrm{uniform}\:\mathrm{on}\:\left[\mathrm{0},\mathrm{1}\right]? \

Question-172819

Question Number 172819 by Mikenice last updated on 01/Jul/22 Answered by CElcedricjunior last updated on 02/Jul/22 x32arctan(x12)dx=kposons)x12=a=>dx=ada$$\boldsymbol{\mathrm{k}}=\int\boldsymbol{\mathrm{a}}^{\mathrm{4}} \boldsymbol{\mathrm{arctan}}\left(\boldsymbol{\mathrm{a}}\right)\boldsymbol{\mathrm{da}}…