Question Number 106705 by bemath last updated on 06/Aug/20 $$\:\:\:\:\:\:\:@\mathrm{bemath}@ \\ $$$$\:\:\:\:\:\int\:\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{9}−\mathrm{4x}^{\mathrm{2}} }}\:\mathrm{dx}\: \\ $$ Answered by mathmax by abdo last updated on 06/Aug/20…
Question Number 106691 by Laplace last updated on 06/Aug/20 $$\boldsymbol{{determine}}\:\boldsymbol{{using}}\:\:\boldsymbol{{laplce}}\:\boldsymbol{{transformation}}\:\boldsymbol{{this}} \\ $$$$\boldsymbol{{integrale}}\: \\ $$$$\:\:\int_{\mathrm{0}} ^{+\infty} \frac{\boldsymbol{{tsin}}\left(\boldsymbol{{tx}}\right)}{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{t}}^{\mathrm{2}\:} }\boldsymbol{{dt}} \\ $$ Answered by mathmax by abdo…
Question Number 106683 by Ar Brandon last updated on 06/Aug/20 $$\mathrm{Prove}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{1}−\mathrm{2}\alpha\mathrm{cost}+\alpha^{\mathrm{2}} \right)\mathrm{dt}=\mathrm{2}\pi\mathrm{ln}\alpha \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 41135 by math khazana by abdo last updated on 02/Aug/18 $${find}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({xt}\right){dt}\:\:{x}\:{from}\:{R}\: \\ $$ Answered by math khazana by abdo last updated…
Question Number 172188 by Mikenice last updated on 23/Jun/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 172191 by Mikenice last updated on 23/Jun/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 41084 by Tawa1 last updated on 01/Aug/18 $$\int\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{6}} \:+\:\mathrm{1}}\:\mathrm{dx} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18 $$\int\frac{{x}^{\mathrm{3}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{4}} −{x}^{\mathrm{2}}…
Question Number 41078 by Necxx last updated on 01/Aug/18 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{sin}\:{x}\:+\:\mathrm{2cos}\:{x}}{\mathrm{3sin}\:{x}\:+\:\mathrm{4cos}\:{x}}{dx} \\ $$ Commented by maxmathsup by imad last updated on 01/Aug/18 $${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 41053 by turbo msup by abdo last updated on 01/Aug/18 $${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{6}} {x}\:{dx}\:{and} \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{6}} {xdx} \\ $$$$\left.\mathrm{1}\right){cslculate}\:{I}\:+{J}\:\:{and}\:{I}−{J} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:{I}\:{and}\:{J}…
Question Number 41054 by turbo msup by abdo last updated on 01/Aug/18 $${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{x}^{\mathrm{2}} }{{sin}^{\mathrm{2}} {x}}{dx}\:. \\ $$ Commented by maxmathsup by imad last…