Menu Close

Category: Integration

determine-using-laplce-transformation-this-integrale-0-tsin-tx-a-2-t-2-dt-

Question Number 106691 by Laplace last updated on 06/Aug/20 $$\boldsymbol{{determine}}\:\boldsymbol{{using}}\:\:\boldsymbol{{laplce}}\:\boldsymbol{{transformation}}\:\boldsymbol{{this}} \\ $$$$\boldsymbol{{integrale}}\: \\ $$$$\:\:\int_{\mathrm{0}} ^{+\infty} \frac{\boldsymbol{{tsin}}\left(\boldsymbol{{tx}}\right)}{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{t}}^{\mathrm{2}\:} }\boldsymbol{{dt}} \\ $$ Answered by mathmax by abdo…

x-3-x-6-1-dx-

Question Number 41084 by Tawa1 last updated on 01/Aug/18 $$\int\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{6}} \:+\:\mathrm{1}}\:\mathrm{dx} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 01/Aug/18 $$\int\frac{{x}^{\mathrm{3}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{4}} −{x}^{\mathrm{2}}…

let-I-0-pi-2-cos-6-x-dx-and-J-0-pi-2-sin-6-xdx-1-cslculate-I-J-and-I-J-2-find-the-value-of-I-and-J-

Question Number 41053 by turbo msup by abdo last updated on 01/Aug/18 $${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{6}} {x}\:{dx}\:{and} \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}^{\mathrm{6}} {xdx} \\ $$$$\left.\mathrm{1}\right){cslculate}\:{I}\:+{J}\:\:{and}\:{I}−{J} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{value}\:{of}\:{I}\:{and}\:{J}…