Menu Close

Category: Integration

x-x-2-4x-3-dx-

Question Number 171971 by ilhamQ last updated on 22/Jun/22 $$\int\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{3}}\:{dx}=… \\ $$ Answered by cortano1 last updated on 22/Jun/22 $$\:\:\frac{{x}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{3}\right)}\:=\:\frac{{a}}{{x}+\mathrm{1}}\:+\:\frac{{b}}{{x}+\mathrm{3}} \\ $$$$\:{a}\:=\:\frac{−\mathrm{1}}{−\mathrm{1}+\mathrm{3}}\:=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:{b}=\frac{−\mathrm{3}}{−\mathrm{3}+\mathrm{1}}\:=\:\frac{\mathrm{3}}{\mathrm{2}}…

let-B-x-y-0-1-t-x-1-1-t-y-1-dt-withx-gt-0and-y-gt-0-prove-that-B-x-y-x-y-x-y-

Question Number 40892 by abdo.msup.com last updated on 28/Jul/18 $${let}\:{B}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{x}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{y}−\mathrm{1}} {dt} \\ $$$${withx}>\mathrm{0}{and}\:{y}>\mathrm{0}\:{prove}\:{that} \\ $$$${B}\left({x},{y}\right)=\:\frac{\Gamma\left({x}\right).\Gamma\left({y}\right)}{\Gamma\left({x}+{y}\right)} \\ $$ Terms of Service Privacy Policy…

let-u-k-1-1-1-2-k-n-1-1-prove-that-u-k-converges-2-let-f-x-1-1-1-2-x-n-1-with-x-0-prove-that-p-N-k-1-p-1-u-k-0-p-1-f-x-dx-k-0-p-u-k-

Question Number 40893 by abdo.msup.com last updated on 28/Jul/18 $${let}\:{u}_{{k}} =\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{{k}} }\right)^{{n}−\mathrm{1}} \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\Sigma\:{u}_{{k}} {converges} \\ $$$$\left.\mathrm{2}\right){let}\:{f}\left({x}\right)=\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{{x}} }\right)^{{n}−\mathrm{1}} \:{with}\:{x}\geqslant\mathrm{0} \\ $$$${prove}\:{that}\:\forall{p}\in{N} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{p}+\mathrm{1}} \:{u}_{{k}}…

let-x-gt-0-and-y-gt-0-and-B-x-y-0-1-t-x-1-1-t-y-1-dt-1-prove-that-B-x-y-B-y-x-2-B-x-1-y-x-y-B-x-y-1-3-B-x-1-y-x-x-y-B-x-y-4-B-x-n-1-n-x-x-1-x-n-5-B-n-p-1-n-p-

Question Number 40891 by abdo.msup.com last updated on 28/Jul/18 $${let}\:{x}>\mathrm{0}\:{and}\:{y}>\mathrm{0}\:{and} \\ $$$${B}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{x}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{y}−\mathrm{1}} {dt} \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:{B}\left({x},{y}\right)={B}\left({y},{x}\right) \\ $$$$\left.\mathrm{2}\right){B}\left({x}+\mathrm{1},{y}\right)=\frac{{x}}{{y}}\:{B}\left({x},{y}+\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right){B}\left({x}+\mathrm{1},{y}\right)=\frac{{x}}{{x}+{y}}{B}\left({x},{y}\right) \\ $$$$\left.\mathrm{4}\right){B}\left({x},{n}+\mathrm{1}\right)=\frac{{n}!}{{x}\left({x}+\mathrm{1}\right)….\left({x}+{n}\right)} \\…

1-calculate-1-n-1-1-n-1-t-1-t-dt-2-prove-that-0-1-1-t-1-t-dt-1-is-constant-number-of-euler-

Question Number 40890 by abdo.msup.com last updated on 28/Jul/18 $$\left.\mathrm{1}\right){calculate}\:\int_{\frac{\mathrm{1}}{{n}+\mathrm{1}}} ^{\frac{\mathrm{1}}{{n}}} \left[\frac{\mathrm{1}}{{t}}−\left[\frac{\mathrm{1}}{{t}}\right]\right]{dt} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left[\frac{\mathrm{1}}{{t}}−\left[\frac{\mathrm{1}}{{t}}\right]\right]{dt}=\mathrm{1}−\gamma \\ $$$$\gamma\:{is}\:{constant}\:{number}\:{of}\:{euler} \\ $$ Commented by maxmathsup by imad…