Question Number 172012 by Mikenice last updated on 23/Jun/22 $${find} \\ $$$$\int{e}^{{x}} {sinxdx} \\ $$ Answered by puissant last updated on 23/Jun/22 $${J}=\int{e}^{{x}} {sinxdx} \\…
Question Number 172010 by Mikenice last updated on 23/Jun/22 $${find}\:{integrate}: \\ $$$$\int{xe}^{{x}} {dx} \\ $$ Answered by puissant last updated on 23/Jun/22 $${K}=\int{xe}^{{x}} {dx}\:\:;\:\:\begin{cases}{{u}'={e}^{{x}} }\\{{v}={x}}\end{cases}\Rightarrow\:\begin{cases}{{u}={e}^{{x}}…
Question Number 172011 by Mikenice last updated on 23/Jun/22 $${find}\:{integrate}: \\ $$$$\int{x}^{\mathrm{2}} {e}^{{x}} {dx} \\ $$ Answered by puissant last updated on 23/Jun/22 $${P}\:=\:\int{x}^{\mathrm{2}} {e}^{{x}}…
Question Number 106445 by Lordose last updated on 05/Aug/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 171971 by ilhamQ last updated on 22/Jun/22 $$\int\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{3}}\:{dx}=… \\ $$ Answered by cortano1 last updated on 22/Jun/22 $$\:\:\frac{{x}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{3}\right)}\:=\:\frac{{a}}{{x}+\mathrm{1}}\:+\:\frac{{b}}{{x}+\mathrm{3}} \\ $$$$\:{a}\:=\:\frac{−\mathrm{1}}{−\mathrm{1}+\mathrm{3}}\:=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:{b}=\frac{−\mathrm{3}}{−\mathrm{3}+\mathrm{1}}\:=\:\frac{\mathrm{3}}{\mathrm{2}}…
Question Number 40892 by abdo.msup.com last updated on 28/Jul/18 $${let}\:{B}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{x}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{y}−\mathrm{1}} {dt} \\ $$$${withx}>\mathrm{0}{and}\:{y}>\mathrm{0}\:{prove}\:{that} \\ $$$${B}\left({x},{y}\right)=\:\frac{\Gamma\left({x}\right).\Gamma\left({y}\right)}{\Gamma\left({x}+{y}\right)} \\ $$ Terms of Service Privacy Policy…
Question Number 40893 by abdo.msup.com last updated on 28/Jul/18 $${let}\:{u}_{{k}} =\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{{k}} }\right)^{{n}−\mathrm{1}} \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\Sigma\:{u}_{{k}} {converges} \\ $$$$\left.\mathrm{2}\right){let}\:{f}\left({x}\right)=\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{{x}} }\right)^{{n}−\mathrm{1}} \:{with}\:{x}\geqslant\mathrm{0} \\ $$$${prove}\:{that}\:\forall{p}\in{N} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{p}+\mathrm{1}} \:{u}_{{k}}…
Question Number 40891 by abdo.msup.com last updated on 28/Jul/18 $${let}\:{x}>\mathrm{0}\:{and}\:{y}>\mathrm{0}\:{and} \\ $$$${B}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{x}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{y}−\mathrm{1}} {dt} \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:{B}\left({x},{y}\right)={B}\left({y},{x}\right) \\ $$$$\left.\mathrm{2}\right){B}\left({x}+\mathrm{1},{y}\right)=\frac{{x}}{{y}}\:{B}\left({x},{y}+\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right){B}\left({x}+\mathrm{1},{y}\right)=\frac{{x}}{{x}+{y}}{B}\left({x},{y}\right) \\ $$$$\left.\mathrm{4}\right){B}\left({x},{n}+\mathrm{1}\right)=\frac{{n}!}{{x}\left({x}+\mathrm{1}\right)….\left({x}+{n}\right)} \\…
Question Number 40890 by abdo.msup.com last updated on 28/Jul/18 $$\left.\mathrm{1}\right){calculate}\:\int_{\frac{\mathrm{1}}{{n}+\mathrm{1}}} ^{\frac{\mathrm{1}}{{n}}} \left[\frac{\mathrm{1}}{{t}}−\left[\frac{\mathrm{1}}{{t}}\right]\right]{dt} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left[\frac{\mathrm{1}}{{t}}−\left[\frac{\mathrm{1}}{{t}}\right]\right]{dt}=\mathrm{1}−\gamma \\ $$$$\gamma\:{is}\:{constant}\:{number}\:{of}\:{euler} \\ $$ Commented by maxmathsup by imad…
Question Number 40889 by abdo.msup.com last updated on 28/Jul/18 $${prove}?{that} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}−\left(\mathrm{1}−{t}\right)^{{n}} }{{t}}{dt}\:=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$ Answered by math khazana by abdo…