Menu Close

Category: Integration

dx-1-x-4-

Question Number 171371 by pticantor last updated on 13/Jun/22 $$\int_{−\infty} ^{+\infty} \frac{\boldsymbol{{dx}}}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{4}} }=? \\ $$ Answered by aleks041103 last updated on 13/Jun/22 $${solve}\:{using}\:{complex}\:{analysis} \\ $$$${we}\:{inregrate}\:{the}\:{complex}\:{function}…

1-d-sin-2-tan-3-2-d-cos-2-cos-3-3-d-sinh-2-tanh-3-4-d-cosh-2-cosh-3-

Question Number 40251 by MJS last updated on 17/Jul/18 $$\mathrm{1}.\:\:\:\:\:\int\frac{{d}\alpha}{\mathrm{sin}\:\mathrm{2}\alpha\:+\mathrm{tan}\:\mathrm{3}\alpha}=? \\ $$$$\mathrm{2}.\:\:\:\:\:\int\frac{{d}\beta}{\mathrm{cos}\:\mathrm{2}\beta\:+\mathrm{cos}\:\mathrm{3}\beta}=? \\ $$$$\mathrm{3}.\:\:\:\:\:\int\frac{{d}\gamma}{\mathrm{sinh}\:\mathrm{2}\gamma\:+\mathrm{tanh}\:\mathrm{3}\gamma}=? \\ $$$$\mathrm{4}.\:\:\:\:\:\int\frac{{d}\delta}{\mathrm{cosh}\:\mathrm{2}\delta\:+\mathrm{cosh}\:\mathrm{3}\delta}=? \\ $$ Answered by maxmathsup by imad last updated…

Please-I-need-help-Exercise-We-have-J-n-0-pi-4-tan-n-x-dx-1-Establish-a-recurrence-relation-between-J-n-2-and-J-n-2-Calculate-J-0-and-J-1-then-deduce-the-expression-of-J-n-a

Question Number 105781 by IE last updated on 31/Jul/20 $$\mathrm{Please},\:\mathrm{I}\:\mathrm{need}\:\mathrm{help}. \\ $$$$\mathrm{Exercise} \\ $$$$\mathrm{We}\:\mathrm{have}\:: \\ $$$$\mathrm{J}_{\mathrm{n}} =\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \mathrm{tan}^{\mathrm{n}} \left(\mathrm{x}\right)\:\mathrm{dx} \\ $$$$ \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Establish}\:\mathrm{a}\:\mathrm{recurrence}\:\mathrm{relation} \\…

1-2-6x-2-2x-3-

Question Number 171301 by mpakhrur last updated on 12/Jun/22 $$\int_{\mathrm{1}} ^{\mathrm{2}} \mathrm{6}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{3} \\ $$ Commented by Kalebwizeman last updated on 12/Jun/22 $$\left.\frac{\mathrm{6}{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{3}{x}\right]\underset{\mathrm{1}}…

dx-x-x-x-2-

Question Number 105755 by bemath last updated on 31/Jul/20 $$\int\:\frac{{dx}}{\:\sqrt{{x}\sqrt{{x}}\:−{x}^{\mathrm{2}} }}\:? \\ $$ Answered by john santu last updated on 31/Jul/20 $${let}\:{u}\:=\:\sqrt{{x}}\:\Rightarrow\:\int\:\frac{\mathrm{2}{u}\:{du}}{\:\sqrt{{u}^{\mathrm{3}} −{u}^{\mathrm{4}} }}\:=\: \\…