Menu Close

Category: Integration

1-1-1-x-2-1-x-2-1-1-x-2-y-2-1-1-y-2-x-2-y-2-z-2-5-2-dz-dy-dx-is-

Question Number 215740 by universe last updated on 16/Jan/25 $$ \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{1}} \:\int_{−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} \:}} ^{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \:\int_{\mathrm{1}−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }} ^{\mathrm{1}+\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}}…

Let-u-1-u-2-s-t-u-tt-1-2-x-1-2-2-x-i-2-u-1-u-1-x-1-x-2-0-x-1-x-2-u-1-x-1-x-2-0-0-u-tt-2-2-x-1-2-

Question Number 215550 by MrGaster last updated on 10/Jan/25 $$\boldsymbol{\mathrm{Let}}\:\boldsymbol{{u}}^{\left(\mathrm{1}\right)} ,\boldsymbol{{u}}^{\left(\mathrm{2}\right)} \boldsymbol{\mathrm{s}}.\boldsymbol{\mathrm{t}}.\begin{cases}{\boldsymbol{{u}}_{\boldsymbol{{tt}}} ^{\left(\mathrm{1}\right)} =\left(\frac{\partial^{\mathrm{2}} }{\partial\boldsymbol{{x}}_{\mathrm{1}} ^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} }{\partial\boldsymbol{{x}}_{{i}} ^{\mathrm{2}} }\right)\boldsymbol{{u}}^{\left(\mathrm{1}\right)} }\\{\boldsymbol{{u}}^{\left(\mathrm{1}\right)} \left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} ,\mathrm{0}\right)=\boldsymbol{\psi}\left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}}…

1-i-n-x-i-2-1-1-i-n-x-i-2-m-1-i-n-a-i-x-i-2k-1-i-n-dx-i-

Question Number 215540 by MrGaster last updated on 10/Jan/25 $$\int_{\underset{\mathrm{1}\leq{i}\leq{n}} {\sum}{x}_{{i}} ^{\mathrm{2}} \leq\mathrm{1}} \left(\underset{\mathrm{1}\leq{i}\leq{n}} {\sum}{x}_{{i}} ^{\mathrm{2}} \right)^{{m}} \left(\underset{\mathrm{1}\leq{i}\leq{n}} {\sum}{a}_{{i}} {x}_{{i}} \right)^{\mathrm{2}{k}} \underset{\mathrm{1}\leq{i}\leq{n}} {\prod}{dx}_{{i}} \\ $$…

e-u-cos-u-sin-u-e-u-du-

Question Number 215498 by alephnull last updated on 08/Jan/25 $$\int\left({e}^{−\omega{u}} +\mathrm{cos}\left({u}\right)−\frac{\mathrm{sin}\left(\omega{u}\right)}{{e}^{{u}} }\right){du} \\ $$ Answered by MathematicalUser2357 last updated on 10/Jan/25 $$−\frac{{e}^{−{u}\omega} }{\omega}+\frac{{e}^{−{u}} \mathrm{sin}\:{u}\omega}{\left(\omega−{i}\right)\left(\omega+{i}\right)}+\frac{{e}^{−{u}} \omega\mathrm{cos}\:{u}\omega}{\left(\omega−{i}\right)\left(\omega+{i}\right)}+\mathrm{sin}\:{u}+{C}…