Question Number 40136 by maxmathsup by imad last updated on 16/Jul/18 $${let}\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:{e}^{−{x}} {dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{\mathrm{1}} \:\:\:{and}\:{A}_{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\:\:{A}_{{n}+\mathrm{1}} =\left({n}+\mathrm{1}\right){A}_{{n}} \:−\frac{\mathrm{1}}{{e}} \\…
Question Number 40134 by maxmathsup by imad last updated on 16/Jul/18 $${calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\frac{{x}^{\mathrm{3}} }{\left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\mathrm{2}} }{dx} \\ $$ Commented by maxmathsup by imad last…
Question Number 40132 by maxmathsup by imad last updated on 16/Jul/18 $${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$ Commented by maxmathsup by imad last updated…
Question Number 40133 by maxmathsup by imad last updated on 16/Jul/18 $${find}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$ Commented by maxmathsup by imad last updated…
Question Number 40130 by maxmathsup by imad last updated on 16/Jul/18 $${calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:{cos}^{\mathrm{4}} {x}\:{sin}^{\mathrm{2}} {xdx} \\ $$ Commented by math khazana by abdo last…
Question Number 40131 by maxmathsup by imad last updated on 16/Jul/18 $${find}\:{the}\:{value}\:{of}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{\mathrm{1}+{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{6}} }{dx} \\ $$ Answered by maxmathsup by imad last updated…
Question Number 40127 by maxmathsup by imad last updated on 16/Jul/18 $${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{e}^{{x}} −\mathrm{1}}{{e}^{{x}} \:+\mathrm{1}}{dx} \\ $$ Commented by math khazana by abdo last…
Question Number 40128 by maxmathsup by imad last updated on 16/Jul/18 $${calculate}\:\:\:\int_{−\mathrm{2}} ^{−\mathrm{1}} \:\:\:\:\:\frac{{dt}}{{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:. \\ $$ Commented by math khazana by abdo last updated…
Question Number 40129 by maxmathsup by imad last updated on 16/Jul/18 $${calculate}\:{I}\:=\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\frac{{ln}\left(\mathrm{1}+{t}\right)}{{t}^{\mathrm{2}} }{dt} \\ $$ Answered by maxmathsup by imad last updated on…
Question Number 40126 by maxmathsup by imad last updated on 16/Jul/18 $${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{tdt}}{\mathrm{1}+{t}^{\mathrm{4}} } \\ $$ Commented by maxmathsup by imad last updated on…