Menu Close

Category: Integration

let-A-n-0-1-x-2n-1-ln-x-x-2-1-dx-1-justify-the-existence-of-A-n-2-calculate-A-n-1-A-n-3-prove-that-x-0-1-0-lt-xln-x-x-2-1-lt-1-2-4-find-lim-n-A-n-

Question Number 40158 by maxmathsup by imad last updated on 16/Jul/18 $${let}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} \:{ln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{justify}\:{the}\:{existence}\:{of}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{A}_{{n}+\mathrm{1}} \:−{A}_{{n}} \\ $$$$\left.\mathrm{3}\left.\right)\:{prove}\:{that}\:\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\Rightarrow\mathrm{0}<\frac{{xln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}<\frac{\mathrm{1}}{\mathrm{2}}\:\:\right.…

let-I-n-0-dx-1-x-3-n-find-a-relation-etween-I-n-and-I-n-1-2-calculate-I-1-and-I-2-

Question Number 40159 by maxmathsup by imad last updated on 16/Jul/18 $${let}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{{n}} } \\ $$$${find}\:{a}\:{relation}\:{etween}\:{I}_{{n}} \:{and}\:{I}_{{n}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}_{\mathrm{1}\:} \:{and}\:{I}_{\mathrm{2}} \\ $$…

let-f-x-1-x-e-t-1-e-t-dt-with-x-lt-0-1-calculate-f-x-2-find-1-0-e-t-1-e-t-dt-

Question Number 40152 by maxmathsup by imad last updated on 16/Jul/18 $${let}\:\:{f}\left({x}\right)\:=\:\:\int_{−\mathrm{1}} ^{{x}} \:\:\:\:\frac{{e}^{{t}} }{\:\sqrt{\mathrm{1}−{e}^{{t}} }}{dt}\:\:\:{with}\:{x}<\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\int_{−\mathrm{1}} ^{\mathrm{0}} \:\:\frac{{e}^{{t}} }{\:\sqrt{\mathrm{1}−{e}^{{t}} }}{dt} \\…

let-F-x-0-pi-2-cos-xsint-dt-1-prove-that-u-R-1-u-2-2-cosu-1-u-2-2-u-4-24-2-prove-that-pi-2-1-x-2-4-F-x-pi-2-1-x-2-4-x-4-64-

Question Number 40151 by maxmathsup by imad last updated on 16/Jul/18 $${let}\:{F}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left({xsint}\right){dt} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\forall{u}\:\in{R}\:\:\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:\leqslant{cosu}\leqslant\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+\frac{{u}^{\mathrm{4}} }{\mathrm{24}} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\right)\leqslant{F}\left({x}\right)\leqslant\:\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:+\frac{{x}^{\mathrm{4}} }{\mathrm{64}}\right) \\…