Question Number 40160 by maxmathsup by imad last updated on 16/Jul/18 $${study}\:{the}\:{convergence}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{1}−{e}^{−{t}} }{{t}\sqrt{{t}}}\:{dt} \\ $$ Commented by math khazana by abdo last updated…
Question Number 40158 by maxmathsup by imad last updated on 16/Jul/18 $${let}\:\:{A}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} \:{ln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}{dx} \\ $$$$\left.\mathrm{1}\right)\:{justify}\:{the}\:{existence}\:{of}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right){calculate}\:{A}_{{n}+\mathrm{1}} \:−{A}_{{n}} \\ $$$$\left.\mathrm{3}\left.\right)\:{prove}\:{that}\:\:{x}\in\right]\mathrm{0},\mathrm{1}\left[\:\Rightarrow\mathrm{0}<\frac{{xln}\left({x}\right)}{{x}^{\mathrm{2}} \:−\mathrm{1}}<\frac{\mathrm{1}}{\mathrm{2}}\:\:\right.…
Question Number 40159 by maxmathsup by imad last updated on 16/Jul/18 $${let}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{{n}} } \\ $$$${find}\:{a}\:{relation}\:{etween}\:{I}_{{n}} \:{and}\:{I}_{{n}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}_{\mathrm{1}\:} \:{and}\:{I}_{\mathrm{2}} \\ $$…
Question Number 40157 by maxmathsup by imad last updated on 16/Jul/18 $${find}\:{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:−\mathrm{2}{t}\:+\mathrm{2}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$ Commented by maxmathsup by imad last updated…
Question Number 40154 by maxmathsup by imad last updated on 16/Jul/18 $${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$ Commented by maxmathsup by imad last updated on…
Question Number 40155 by maxmathsup by imad last updated on 16/Jul/18 $${caoculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}\:{dt}}{\left(\mathrm{1}+{t}^{\mathrm{4}} \right)^{\mathrm{2}} } \\ $$ Commented by maxmathsup by imad last updated…
Question Number 40156 by maxmathsup by imad last updated on 16/Jul/18 $${find}\:\:\:\int_{{e}^{\mathrm{2}} } ^{+\infty} \:\:\:\:\frac{{dt}}{{tln}\left({t}\right){ln}\left({ln}\left({t}\right)\right.} \\ $$ Commented by maxmathsup by imad last updated on…
Question Number 40153 by maxmathsup by imad last updated on 16/Jul/18 $${calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\frac{{t}−\mathrm{2}}{\:\sqrt{{t}^{\mathrm{2}} \:−\mathrm{1}}}{dt} \\ $$ Commented by maxmathsup by imad last updated on…
Question Number 40152 by maxmathsup by imad last updated on 16/Jul/18 $${let}\:\:{f}\left({x}\right)\:=\:\:\int_{−\mathrm{1}} ^{{x}} \:\:\:\:\frac{{e}^{{t}} }{\:\sqrt{\mathrm{1}−{e}^{{t}} }}{dt}\:\:\:{with}\:{x}<\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:\int_{−\mathrm{1}} ^{\mathrm{0}} \:\:\frac{{e}^{{t}} }{\:\sqrt{\mathrm{1}−{e}^{{t}} }}{dt} \\…
Question Number 40151 by maxmathsup by imad last updated on 16/Jul/18 $${let}\:{F}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left({xsint}\right){dt} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\forall{u}\:\in{R}\:\:\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:\leqslant{cosu}\leqslant\mathrm{1}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+\frac{{u}^{\mathrm{4}} }{\mathrm{24}} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\right)\leqslant{F}\left({x}\right)\leqslant\:\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:+\frac{{x}^{\mathrm{4}} }{\mathrm{64}}\right) \\…