Question Number 108285 by Ar Brandon last updated on 16/Aug/20 $$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral} \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{t}^{\mathrm{5}} +\mathrm{3t}+\mathrm{1}}{\mathrm{t}^{\mathrm{3}} +\mathrm{100}}\mathrm{e}^{−\mathrm{t}} \mathrm{dt} \\ $$ Terms of Service Privacy Policy…
Question Number 108283 by Ar Brandon last updated on 16/Aug/20 $$\mathrm{Given}\:\mathrm{the}\:\mathrm{function}\:\Gamma\:\mathrm{defined}\:\mathrm{by}\:\Gamma\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{+\infty} \mathrm{t}^{\mathrm{x}−\mathrm{1}} \mathrm{e}^{−\mathrm{t}} \mathrm{dt} \\ $$$$\mathrm{1}.\:\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:\mathrm{definition}\:\mathrm{of}\:\Gamma\:? \\ $$$$\mathrm{2}.\:\:\mathrm{Show}\:\mathrm{that}\:\forall\mathrm{x}\in\:\mathrm{D}\Gamma,\:\mathrm{x}\Gamma\left(\mathrm{x}\right)=\Gamma\left(\mathrm{x}+\mathrm{1}\right)\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\Gamma\left(\mathrm{n}\right),\:\mathrm{n}\in\mathbb{N}^{\ast} \\ $$$$\mathrm{3}.\:\:\mathrm{Assuming}\:\int_{\mathrm{0}} ^{+\infty} \mathrm{e}^{−\mathrm{u}^{\mathrm{2}} } =\frac{\sqrt{\pi}}{\mathrm{2}},\:\mathrm{calculate}\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{that}…
Question Number 108282 by Ar Brandon last updated on 16/Aug/20 $$\mathrm{Determine}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral} \\ $$$$\int_{\mathrm{2}} ^{+\infty} \sqrt{\mathrm{t}^{\mathrm{2}} +\mathrm{3t}}\:\mathrm{ln}\left(\mathrm{cos}\left(\frac{\mathrm{1}}{\mathrm{t}}\right)\right)\:\mathrm{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{ln}\left(\mathrm{t}\right)}\right)\mathrm{dt} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 42708 by prof Abdo imad last updated on 01/Sep/18 $${calculate}\:\:{f}\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−\mathrm{2}{x}} −{e}^{−{x}} }{{x}^{\mathrm{2}} }\:{e}^{−\alpha{x}^{\mathrm{2}} } {dx}\:\:{with}\:\alpha>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−\mathrm{2}{x}} \:−{e}^{−{x}} }{{x}^{\mathrm{2}}…
Question Number 42709 by rahul 19 last updated on 01/Sep/18 $$\mathrm{If}\:\mathrm{f}\left({x}\right)=\:{x}^{\mathrm{3}} \:−\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}\:+{x}\:+\:\frac{\mathrm{1}}{\mathrm{4}}. \\ $$$${T}\mathrm{hen}\:\int_{\frac{\mathrm{1}}{\mathrm{4}}} ^{\frac{\mathrm{3}}{\mathrm{4}}} \:\mathrm{f}\left(\mathrm{f}\left({x}\right)\right)\mathrm{d}{x}\:=? \\ $$ Commented by rahul 19 last updated…
Question Number 42704 by maxmathsup by imad last updated on 01/Sep/18 $${f}\left({x}\right)\:\:=\:\:\frac{{e}^{\mathrm{3}{x}} \:+{e}^{−\mathrm{3}{x}} }{\mathrm{2}} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{f}^{−\mathrm{1}} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:{x}\:{f}\left({x}\right){dx}\:\:\:\:{and}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx} \\ $$$$\left.\mathrm{3}\right)\:\:{calculate}\:\:\:\int\:\:{f}^{−\mathrm{1}}…
Question Number 42695 by prof Abdo imad last updated on 31/Aug/18 $${calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{x}^{\mathrm{4}} }{{x}^{\mathrm{8}\:} \:+\mathrm{16}}{dx} \\ $$ Commented by maxmathsup by imad last updated…
Question Number 42680 by prof Abdo imad last updated on 31/Aug/18 $${calculale}\:\:{A}_{{n}} \left(\alpha\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}^{{n}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:{with} \\ $$$${n}\:{integr}\:{natural}. \\ $$$$ \\ $$ Commented by…
Question Number 42679 by maxmathsup by imad last updated on 31/Aug/18 $${calculate}\:\:\:\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\:\:\:\:\:\frac{{sinx}}{{cosx}\:+{tanx}}{dx}\:. \\ $$ Commented by Meritguide1234 last updated on 03/Sep/18 Commented by…
Question Number 108175 by bemath last updated on 15/Aug/20 Commented by bemath last updated on 15/Aug/20 $${a}\:{man}\:\mathrm{6}\:{feet}\:{tall}\:{walks}\:{at}\:{a}\:{rate}\:\mathrm{6}\:{feet}\: \\ $$$${per}\:{second}\:{away}\:{from}\:{a}\:{light}\:{that}\: \\ $$$${is}\:\mathrm{15}\:{feet}\:{above}\:{the}\:{ground}. \\ $$$${When}\:{he}\:{is}\:\mathrm{10}\:{feet}\:{from}\:{the}\:{base}\:{of}\:{the}\:{light} \\ $$$${at}\:{what}\:{rate}\:{is}\:{the}\:{tip}\:{of}\:{his}\:{shadow}…