Menu Close

Category: Integration

let-x-gt-0-and-y-gt-0-and-B-x-y-0-1-t-x-1-1-t-y-1-dt-1-prove-that-B-x-y-B-y-x-2-B-x-1-y-x-y-B-x-y-1-3-B-x-1-y-x-x-y-B-x-y-4-B-x-n-1-n-x-x-1-x-n-5-B-n-p-1-n-p-

Question Number 40891 by abdo.msup.com last updated on 28/Jul/18 letx>0andy>0andB(x,y)=01tx1(1t)y1dt1)provethatB(x,y)=B(y,x)2)B(x+1,y)=xyB(x,y+1)3)B(x+1,y)=xx+yB(x,y)$$\left.\mathrm{4}\right){B}\left({x},{n}+\mathrm{1}\right)=\frac{{n}!}{{x}\left({x}+\mathrm{1}\right)….\left({x}+{n}\right)} \