Question Number 170802 by Sotoberry last updated on 31/May/22 Answered by thfchristopher last updated on 31/May/22 $$\int\mathrm{ln}\:\left({x}+{x}^{\mathrm{2}} \right){dx} \\ $$$$=\int\mathrm{ln}\:{x}\left({x}+\mathrm{1}\right){dx} \\ $$$$=\int\mathrm{ln}\:{xdx}+\int\mathrm{ln}\:\left({x}+\mathrm{1}\right){dx} \\ $$$$={x}\mathrm{ln}\:{x}−\int{xd}\left(\mathrm{ln}\:{x}\right)+{x}\mathrm{ln}\:\left({x}+\mathrm{1}\right)−\int{xd}\left[\mathrm{ln}\:\left({x}+\mathrm{1}\right)\right] \\…
Question Number 39712 by math khazana by abdo last updated on 10/Jul/18 $${calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left({x}^{{n}} \right)\:+{sin}\left({x}^{{n}} \right)}{\left({x}^{\mathrm{2}} \:+\mathrm{9}\right)^{{n}} }\:{dx} \\ $$ Commented by math khazana…
Question Number 39711 by math khazana by abdo last updated on 10/Jul/18 $${calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}^{{n}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }\:{dx}\:{with}\:{n}\:{natral}\:{integr} \\ $$ Commented by maxmathsup by imad…
Question Number 39706 by behi83417@gmail.com last updated on 10/Jul/18 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 105239 by bemath last updated on 27/Jul/20 $$\underset{\underset{{p}=\mathrm{5}} {\overset{\mathrm{6}} {\sum}}{p}} {\overset{\underset{{p}=\mathrm{8}} {\overset{\mathrm{11}} {\sum}}{p}} {\sum}}\:\underset{\mathrm{11}} {\overset{\mathrm{13}} {\int}}\left(\frac{\mathrm{12}{ky}}{{x}^{\mathrm{2}} }\:+\:\mathrm{6}{x}\right)\:{dx}\:=\:\underset{\underset{{p}=\mathrm{4}} {\overset{\mathrm{7}} {\sum}}{p}} {\overset{\underset{{p}=\mathrm{9}} {\overset{\mathrm{12}} {\sum}}{p}} {\sum}}\:\underset{\mathrm{11}}…
Question Number 105233 by mathmax by abdo last updated on 27/Jul/20 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{ch}\left(\mathrm{cosx}\right)−\mathrm{cos}\left(\mathrm{chx}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{3}}\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 105232 by mathmax by abdo last updated on 27/Jul/20 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{cos}\left(\mathrm{2x}^{\mathrm{2}} \right)}{\left(\mathrm{4x}^{\mathrm{2}} \:+\mathrm{9}\right)^{\mathrm{3}} }\mathrm{dx} \\ $$ Answered by mathmax by abdo last…
Question Number 105230 by mathmax by abdo last updated on 27/Jul/20 $$\mathrm{calculate}\:\int_{\mathrm{1}} ^{+\infty} \frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{4}\right)^{\mathrm{2}} } \\ $$ Answered by 1549442205PVT last updated…
Question Number 105231 by mathmax by abdo last updated on 27/Jul/20 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\frac{\mathrm{2x}^{\mathrm{2}} −\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$ Answered by 1549442205PVT last…
Question Number 39660 by abdo mathsup 649 cc last updated on 09/Jul/18 $${let}\:\:{S}_{{n}} \:\:=\:\int_{\mathrm{0}} ^{{n}} \:\:\:\:\:\frac{{x}\left(−\mathrm{1}\right)^{\left[{x}\right]} }{\left({x}+\mathrm{1}\:−\left[{x}\right]\right)^{\mathrm{3}} }{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:{S}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:{S}_{{n}} \\ $$…