Question Number 170549 by mathlove last updated on 26/May/22 $$\int_{\mathrm{0}} ^{\mathrm{1}} {xarctan}^{\mathrm{6}} {x}\:{dx}=? \\ $$ Answered by Mathspace last updated on 26/May/22 $${by}\:\rho{arts}\:\:{I}=\left[\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{arctan}^{\mathrm{6}} {x}\right]_{\mathrm{0}}…
Question Number 39477 by malwaan last updated on 06/Jul/18 $$\int\mathrm{2}^{\mathrm{x}} \mathrm{3}^{\mathrm{2x}} \mathrm{dx}=? \\ $$ Commented by abdo mathsup 649 cc last updated on 07/Jul/18 $${I}\:=\:\int\:\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}{x}}…
Question Number 170545 by kndramaths last updated on 26/May/22 $$\:\:\:\:{please}\:{help}\:{me}\:{to}\:{find}\:{this}. \\ $$$$\:\:\:{a}=\:\int\int_{{D}} \frac{{ydxdy}}{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }\:{D}:\left\{{x}\geqslant\mathrm{0}.{y}\geqslant\mathrm{0}.{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant{a}^{\mathrm{2}} \right\} \\ $$$$\:\:\:{b}=\int\int\int_{{v}} \left({x}−{y}+{z}\right)^{\mathrm{2}} {dxdydz} \\ $$$$\:\:{v}:\left\{{x}=\mathrm{0}.{y}=\mathrm{0}.{z}=\mathrm{0}\:{x}+{z}=\mathrm{1}.{y}+{z}=\mathrm{1}\right\} \\…
Question Number 170550 by mathlove last updated on 26/May/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 170535 by mathlove last updated on 26/May/22 $$\int_{{c}} \left({cosxsiny}−{xy}\right){dx}+\left({sinx}\:\centerdot{cosy}\right){dy} \\ $$$${faind}\:{integral}\:{on}\:{the}\:{opposite} \\ $$$${sid}\:{of}\:{the}\:{clock}\:{face}\:{in}\:{the} \\ $$$${c}\:{unit}\:{circle}? \\ $$$${solve}\:{this} \\ $$ Commented by mathlove last…
Question Number 170532 by MikeH last updated on 26/May/22 $$\mathrm{Let}\:{I}_{{n}} \:=\int{x}^{{n}} {e}^{−{x}} {dx},\:{n}\:=\:\mathrm{0},\mathrm{1},\mathrm{2},… \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Show}\:\mathrm{that}\:{I}_{{n}} \:=\:−{x}^{{n}} {e}^{−{x}} +{nI}_{{n}−\mathrm{1}} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Show}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\infty} {x}^{{n}} {e}^{−{x}} {dx}\:=\:{n}! \\…
Question Number 104980 by I want to learn more last updated on 25/Jul/20 Commented by Dwaipayan Shikari last updated on 25/Jul/20 Commented by I want…
Question Number 170519 by nimnim last updated on 25/May/22 $$\:\:\:\:{Evaluate}\::\:\:\:\int_{−\mathrm{1}} ^{\:+\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{2}^{{x}} }{dx} \\ $$$$\:\:\:\:{Please}\:{help}\:{me}.. \\ $$ Answered by Mathspace last updated on 26/May/22…
Question Number 39443 by rahul 19 last updated on 06/Jul/18 $$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left[\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}+\:\frac{\mathrm{2}}{\mathrm{n}^{\mathrm{2}} +\mathrm{2}}+\:\frac{\mathrm{3}}{\mathrm{n}^{\mathrm{2}} +\mathrm{3}}+\:….+\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\right]\:=\:? \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 06/Jul/18 $${very}\:{good}…{this}\:{is}\:{the}\:{way}\:{to}\:{solve}\:{it}……
Question Number 39440 by rahul 19 last updated on 06/Jul/18 $$\mathrm{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\:{x}_{} } \:{e}^{{t}\:} \left(\frac{\mathrm{1}+\mathrm{sin}\:{t}}{\mathrm{1}+\mathrm{cos}\:{t}}\right)\:{dt}. \\ $$$${T}\mathrm{hen}\:\:\mathrm{f}\left(\frac{\pi}{\mathrm{3}}\right)×\mathrm{f}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\:=\:? \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on…