Menu Close

Category: Integration

solve-this-D-x-2-e-xy-dxdy-D-x-y-R-2-0-x-1-0-y-2-D-ydxdy-1-x-2-y-2-3-2-0-x-1-0-y-1-

Question Number 170501 by kndramaths last updated on 25/May/22 $$\:\:\:\:\:\:\:\:\:\:{solve}\:{this}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\int_{{D}} {x}^{\mathrm{2}} {e}^{{xy}} {dxdy} \\ $$$${D}:\left\{\left({x}.{y}\right)\in{R}^{\mathrm{2}} \:/\mathrm{0}\leqslant{x}\leqslant\mathrm{1}.\:\:\mathrm{0}\leqslant{y}\leqslant\mathrm{2}\right\} \\ $$$$\:\:\:\:\:\:\int\underset{{D}} {\int}\frac{{ydxdy}}{\left(\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }.\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}.\mathrm{0}\leqslant{y}\leqslant\mathrm{1}. \\…

e-x-2x-3-4-3-dx-

Question Number 104928 by bobhans last updated on 24/Jul/20 $$\int\:\left({e}^{{x}} −\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{4}} \right)^{\mathrm{3}} \:{dx} \\ $$ Commented by kaivan.ahmadi last updated on 24/Jul/20 $$\int\left({e}^{\mathrm{3}{x}} −\mathrm{3}{e}^{\mathrm{2}{x}} \left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{4}}…

The-values-of-a-for-which-y-ax-2-ax-1-24-and-x-ay-2-ay-1-24-touch-each-other-are-1-2-3-2-3-2-3-13-601-12-4-13-601-12-

Question Number 39384 by rahul 19 last updated on 05/Jul/18 $$\mathrm{The}\:\mathrm{values}\:\mathrm{of}\:\mathrm{a}\:\mathrm{for}\:\mathrm{which}\:\mathrm{y}=\:\mathrm{a}{x}^{\mathrm{2}} +{ax}+\frac{\mathrm{1}}{\mathrm{24}} \\ $$$${and}\:{x}\:=\:{ay}^{\mathrm{2}} +{ay}+\frac{\mathrm{1}}{\mathrm{24}}\:{touch}\:{each}\:{other} \\ $$$${are} \\ $$$$\left.\mathrm{1}\left.\right)\:\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\right)\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\left.\mathrm{3}\left.\right)\:\frac{\mathrm{13}+\sqrt{\mathrm{601}}}{\mathrm{12}}\:\:\:\:\:\:\:\mathrm{4}\right)\:\frac{\mathrm{13}−\sqrt{\mathrm{601}}}{\mathrm{12}}. \\ $$ Answered by…

Question-39381

Question Number 39381 by rahul 19 last updated on 05/Jul/18 Answered by ajfour last updated on 06/Jul/18 $${f}\:'\left({x}\right)\geqslant\left[{f}\left({x}\right)\right]^{\mathrm{3}} +\left[{f}\left({x}\right)\right]^{−\mathrm{1}} \\ $$$${and}\:{f}\left(\mathrm{0}\right)=\mathrm{1}\:,\:\:{f}\left({a}\right)=\mathrm{3}^{\mathrm{1}/\mathrm{4}} \\ $$$$\Rightarrow\:\:\:\int_{\mathrm{1}} ^{\:\:{y}} \frac{{dy}}{{y}^{\mathrm{3}}…