Menu Close

Category: Integration

using-cylindrical-coordinates-x-rcos-y-rsin-z-z-to-evaluate-the-integral-K-S-x-2-y-2-z-2-dxdydz-where-S-x-y-z-R-3-x-2-y-2-4-0-z-x-2-y-2-

Question Number 169706 by MikeH last updated on 06/May/22 $$\mathrm{using}\:\mathrm{cylindrical}\:\mathrm{coordinates}\:\begin{cases}{{x}={r}\mathrm{cos}\theta}\\{{y}\:=\:{r}\mathrm{sin}\:\theta}\\{{z}={z}}\end{cases} \\ $$$$\mathrm{to}\:\mathrm{evaluate}\:\mathrm{the}\:\mathrm{integral} \\ $$$${K}=\:\int\int\int_{{S}} \sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −{z}^{\mathrm{2}} }\:{dxdydz} \\ $$$$\mathrm{where} \\ $$$$\:{S}=\:\left\{\left({x},{y},{z}\right)\:\in\mathbb{R}^{\mathrm{3}} :\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:\leqslant\:\mathrm{4},\:\mathrm{0}\:\leqslant{z}\leqslant\sqrt{{x}^{\mathrm{2}}…

M-dx-x-4-x-2-6x-8-

Question Number 169677 by cortano1 last updated on 06/May/22 $$\:\:\:\:{M}\:=\:\int\:\frac{{dx}}{\left({x}−\mathrm{4}\right)\sqrt{{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{8}}}\:=? \\ $$ Answered by MJS_new last updated on 06/May/22 $$\int\frac{{dx}}{\left({x}+{c}\right)\sqrt{{x}^{\mathrm{2}} +{ax}+{b}}}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{{x}^{\mathrm{2}} +{ax}+{b}}+{x}+\frac{{a}}{\mathrm{2}}\:\rightarrow\:{dx}=\frac{\sqrt{{x}^{\mathrm{2}}…

xtan-1-x-1-x-2-dx-

Question Number 104104 by bemath last updated on 19/Jul/20 $$\int\:\frac{{x}\mathrm{tan}^{−\mathrm{1}} \left({x}\right)}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{dx}\:? \\ $$ Answered by OlafThorendsen last updated on 19/Jul/20 $$\mathrm{By}\:\mathrm{parts}\:: \\ $$$$\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\mathrm{arctan}{x}−\int\sqrt{\mathrm{1}+{x}^{\mathrm{2}}…

Question-169559

Question Number 169559 by TOTTI last updated on 03/May/22 Commented by cortano1 last updated on 03/May/22 $$\:\mathrm{2}^{{nd}} \:{way}\: \\ $$$$\:\:\begin{array}{|c|c|c|}{{x}}&\hline{\left(\mathrm{1}−{x}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }\\{\mathrm{1}}&\hline{−\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}−{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\\{\mathrm{0}}&\hline{−\frac{\mathrm{4}}{\mathrm{15}}\left(\mathrm{1}−{x}\right)^{\frac{\mathrm{5}}{\mathrm{2}}} }\\\hline\end{array} \\ $$$$\:{I}=\int\:{x}\:\sqrt{\mathrm{1}−{x}}\:{dx}\:=\:−\frac{\mathrm{2}}{\mathrm{3}}{x}\:\sqrt{\left(\mathrm{1}−{x}\right)^{\mathrm{3}}…

Question-169548

Question Number 169548 by mathlove last updated on 02/May/22 Commented by infinityaction last updated on 02/May/22 $$\int\frac{{x}}{\mathrm{2cos}\:^{\mathrm{2}} {x}/\mathrm{2}}{dx}\:+\:\int\frac{\mathrm{2sin}\:{x}/\mathrm{2}\:\mathrm{cos}\:{x}/\mathrm{2}}{\mathrm{2cos}\:^{\mathrm{2}} {x}/\mathrm{2}}{dx} \\ $$$$\underset{{by}\:{parts}\:} {\underbrace{\frac{\mathrm{1}}{\mathrm{2}}\int{x}\mathrm{sec}\:^{\mathrm{2}} {x}/\mathrm{2}\:{dx}}}\:+\:\int\mathrm{tan}\:{x}/\mathrm{2}\:{dx} \\ $$$${be}\:{continued}…