Menu Close

Category: Integration

prove-that-0-1-1-1-t-a-2-dt-n-0-1-n-2-n-na-1-2-find-the-value-of-n-0-1-n-2-n-3n-1-

Question Number 38118 by maxmathsup by imad last updated on 21/Jun/18 $${prove}\:{that}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+\frac{{t}^{{a}} }{\mathrm{2}}}{dt}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} \left({na}+\mathrm{1}\right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} \left(\mathrm{3}{n}+\mathrm{1}\right)}…