Menu Close

Category: Integration

let-I-0-e-x-cos-2-2pix-dx-and-J-0-e-x-sin-2-2pix-dx-1-calculate-I-J-and-I-J-2-find-the-value-of-I-and-J-

Question Number 37884 by prof Abdo imad last updated on 18/Jun/18 $${let}\:{I}\:\:=\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left[{x}\right]} \:{cos}^{\mathrm{2}} \left(\mathrm{2}\pi{x}\right){dx}\:{and}\: \\ $$$${J}\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left[{x}\right]} \:{sin}^{\mathrm{2}} \left(\mathrm{2}\pi{x}\right)\:{dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}\:+{J}\:{and}\:{I}\:−{J} \\…

Question-168894

Question Number 168894 by mnjuly1970 last updated on 20/Apr/22 Commented by mahdipoor last updated on 20/Apr/22 $$\int\frac{\mathrm{1}}{\mathrm{12}}\left(\frac{\mathrm{3}−{x}}{{x}^{\mathrm{2}} +{x}}+\frac{{x}−\mathrm{2}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}}\right){dx}= \\ $$$$\int\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}\right)\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}\right)}=\int\frac{{d}\left({lnx}\right)}{\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}\right)}= \\…

Question-168898

Question Number 168898 by mathlove last updated on 20/Apr/22 Answered by FelipeLz last updated on 21/Apr/22 $$\mathrm{2}^{{x}} \:=\:{u}\:\Rightarrow\:{du}\:=\:\mathrm{2}^{{x}} \mathrm{ln}\left(\mathrm{2}\right){dx} \\ $$$$\int\mathrm{2}^{\mathrm{2}^{\mathrm{2}^{{x}} } } \mathrm{2}^{\mathrm{2}^{{x}} }…

let-f-x-x-2-1-x-4-1-calculate-f-n-x-2-find-f-n-0-3-developp-f-at-integr-serie-4-calculate-0-1-f-x-dx-

Question Number 37820 by prof Abdo imad last updated on 17/Jun/18 $${let}\:{f}\left({x}\right)=\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}}…

let-I-0-e-x-cos-2-pi-x-dx-and-J-0-e-x-sin-2-pi-x-dx-1-calculate-I-J-and-I-J-2-find-the-values-of-I-and-J-

Question Number 37815 by prof Abdo imad last updated on 17/Jun/18 $${let}\:{I}\:\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \:{cos}^{\mathrm{2}} \left(\pi\left[{x}\right]\right){dx}\:{and} \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} \:{sin}^{\mathrm{2}} \left(\pi\left[{x}\right]\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}\:+{J}\:\:{and}\:{I}\:−{J} \\…