Question Number 168477 by infinityaction last updated on 11/Apr/22 Commented by mr W last updated on 11/Apr/22 $$\pi/\mathrm{3}>\mathrm{1} \\ $$$$\Rightarrow\mathrm{cos}^{−\mathrm{1}} \left(\pi/\mathrm{3}\right)\:{is}\:{not}\:{defined}! \\ $$$${question}\:{is}\:{wrong}! \\ $$…
Question Number 168473 by Mastermind last updated on 11/Apr/22 $${Integrate}: \\ $$$$\int\left(\frac{\mathrm{1}}{{x}}−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dx} \\ $$$$ \\ $$$${Mastermind} \\ $$ Answered by MJS_new last updated on…
Question Number 37404 by ajfour last updated on 12/Jun/18 $$\int_{\mathrm{0}} ^{\:\:\mathrm{2}\pi} \sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\mathrm{cos}\:\theta}\:{d}\theta\: \\ $$$$\:\:\:\:{with}\:\:{a}>{b}>\mathrm{0}\:. \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jun/18…
Question Number 102926 by mohammad17 last updated on 11/Jul/20 $$\:\int\:\frac{{d}\theta}{\mathrm{2}{sin}^{\mathrm{2}} \theta−{cos}^{\mathrm{2}} \theta}\:\:? \\ $$ Answered by OlafThorendsen last updated on 11/Jul/20 $$\int\frac{{d}\theta}{\mathrm{2}\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }−\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}…
Question Number 102922 by mohammad17 last updated on 11/Jul/20 $$\int\:\frac{{dx}}{{x}^{\mathrm{3}} +\mathrm{3}{x}−\mathrm{5}}\:\:? \\ $$ Commented by prakash jain last updated on 11/Jul/20 $$\mathrm{The}\:\mathrm{approach}\:\mathrm{you}\:\mathrm{take}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\mathrm{the}\:\mathrm{question} \\…
Question Number 168463 by cortano1 last updated on 11/Apr/22 $$\:\:\:\:\:\:\:\:\:\:\:\:\int\:\frac{\mathrm{4csc}^{\mathrm{2}} {x}}{\:\sqrt{\mathrm{1}−\mathrm{3cot}\:\mathrm{2}{x}}}\:{dx}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 168459 by BegamovSirojiddin last updated on 11/Apr/22 Answered by Mathspace last updated on 11/Apr/22 $${I}=\int\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\frac{\mathrm{5}}{\mathrm{2}}} } \\ $$$${I}=\int\:\:\frac{{dx}}{\left(\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}\right)^{\frac{\mathrm{5}}{\mathrm{2}}} }\:\:\left({x}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{tant}\right. \\ $$$${I}=\int\frac{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\mathrm{1}+{tan}^{\mathrm{2}}…
Question Number 102911 by I want to learn more last updated on 11/Jul/20 $$\int\:\frac{\mathrm{sin}\left(\mathrm{x}\right)}{\mathrm{x}}\:\:\mathrm{dx} \\ $$ Commented by prakash jain last updated on 11/Jul/20 $$\mathrm{This}\:\mathrm{question}\:\mathrm{has}\:\mathrm{been}\:\mathrm{asked}\:\mathrm{so}\:\mathrm{many}…
Question Number 168446 by amin96 last updated on 10/Apr/22 Answered by Mathspace last updated on 11/Apr/22 $$\Psi=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \:\frac{{cos}\left({nx}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$$$={Re}\left(\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty\:} \frac{{e}^{{inx}} }{{x}^{\mathrm{2}}…
Question Number 102905 by bemath last updated on 11/Jul/20 $${I}=\mathrm{2}\underset{\mathrm{0}} {\overset{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}} {\int}}\:\frac{\mathrm{sin}^{−\mathrm{1}} \left({x}\right)}{{x}}\:{dx}\:−\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\mathrm{tan}^{−\mathrm{1}} \left({x}\right)}{{x}}{dx} \\ $$ Answered by bramlex last updated on 11/Jul/20…