Question Number 37303 by math khazana by abdo last updated on 11/Jun/18 $${calculate}\:\:\int_{\gamma} \:\:\:\:\:\:\frac{{dz}}{{z}^{\mathrm{3}} \:+\mathrm{8}}\:{in}\:{those}\:{cases} \\ $$$$\left.\mathrm{1}\right)\:\gamma\:=\left\{{z}\in{C}\:/\:\mid{z}\mid\:=\mathrm{1}\right\} \\ $$$$\left.\mathrm{2}\right)\:\gamma\:=\left\{{z}\in{C}\:/\:\mid{z}\mid\:=\mathrm{3}\right\} \\ $$ Commented by prof Abdo…
Question Number 37302 by math khazana by abdo last updated on 11/Jun/18 $${let}\:\gamma\:=\:\left\{{z}\in{C}\:/\:\mid{z}\mid\:=\mathrm{4}\right\}\: \\ $$$${calculate}\:\:\int_{\gamma} \:\:\:\:\:\frac{{dz}}{{z}\:{sinz}}\:{in}\:{the}\:{positif}\:{sens}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 37300 by math khazana by abdo last updated on 11/Jun/18 $${let}\:{f}\left({z}\right)=\frac{\left(\mathrm{1}−{z}^{\mathrm{2}} \right){e}^{\mathrm{2}{z}} }{{z}^{\mathrm{3}} } \\ $$$${calculate}\:{Res}\left({f},\:\mathrm{0}\right) \\ $$ Commented by prof Abdo imad…
Question Number 37301 by math khazana by abdo last updated on 11/Jun/18 $${find}?{the}\:{value}\:{of}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\left(\mathrm{2}{x}+\mathrm{1}\right){e}^{−{x}^{\mathrm{2}} } }{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }\:{dx}\:. \\ $$ Terms of Service Privacy Policy…
Question Number 168368 by SUPERMATH last updated on 09/Apr/22 Answered by qaz last updated on 09/Apr/22 $$\int\frac{\mathrm{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} }}\mathrm{dx}=\int\sqrt{\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} }−\frac{\mathrm{1}+\mathrm{x}}{\:\sqrt{\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} }}\mathrm{dx} \\ $$$$=\mathrm{x}\sqrt{\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} }−\int\frac{\mathrm{x}+\mathrm{2x}^{\mathrm{2}} }{\:\mathrm{2}\sqrt{\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}}…
Question Number 37299 by math khazana by abdo last updated on 11/Jun/18 $${calculate}\:\:\int_{{C}} \:\:\:\frac{\mathrm{9}\left({z}^{\mathrm{2}} \:+\mathrm{2}\right)}{{z}\left({z}+\mathrm{1}\right)^{\mathrm{3}} \left({z}−\mathrm{2}\right)}{dz}\:\:{with}\:\:{C}\:{is}\:{the} \\ $$$${circle}\:{C}\:=\left\{{z}\in{C}/\:\mid{z}\mid\:=\mathrm{3}\right\}\: \\ $$ Commented by math khazana by…
Question Number 37297 by math khazana by abdo last updated on 11/Jun/18 $${calculate}\:\:\int_{{C}} \:\:\:\:\frac{{z}}{{z}^{\mathrm{2}} \:+\mathrm{1}}{dz}\:\:{with}\:{C}=\left\{{z}\in{C}/\mid{z}\mid=\frac{\mathrm{1}}{\mathrm{2}}\right\} \\ $$ Commented by math khazana by abdo last updated…
Question Number 37298 by math khazana by abdo last updated on 11/Jun/18 $${calculate}\:\:\int_{\gamma} \:\:\:\:\frac{{z}+\mathrm{1}}{{z}\left({z}−\mathrm{1}\right)\left({z}+\mathrm{2}\right)}{dz}\:\:{with}\:\gamma\:{is}\:{the} \\ $$$${circle}\:\gamma\:=\left\{{z}\in{C}/\:\:\mid{z}\mid\:=\frac{\mathrm{3}}{\mathrm{2}}\right\} \\ $$ Commented by prof Abdo imad last updated…
Question Number 168366 by cortano1 last updated on 09/Apr/22 Answered by qaz last updated on 09/Apr/22 $$\int_{−\pi/\mathrm{2}} ^{\pi/\mathrm{2}} \frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{1}−\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}}\mathrm{dx}=\int_{−\pi/\mathrm{2}} ^{\pi/\mathrm{2}} \frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{1}+\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}}\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\pi/\mathrm{2}}…
Question Number 37289 by math khazana by abdo last updated on 11/Jun/18 $${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\:\:\frac{{dx}}{{cos}^{\mathrm{2}} {t}\:\:+\mathrm{4}{sin}^{\mathrm{2}} {t}}{dt}\:. \\ $$ Terms of Service Privacy Policy Contact:…