Menu Close

Category: Integration

Does-anyone-know-how-to-prove-this-V-dxdydz-1-x-4-y-4-z-4-4-1-4-4-4-where-V-is-the-unit-cube-0-1-3-Thankyou-

Question Number 197376 by megrex last updated on 15/Sep/23 $${Does}\:{anyone}\:{know}\:{how}\:{to}\:{prove}\:{this}? \\ $$$$\:\:\:\:\:\:\:\:\:\:\int\int\int_{{V}} \:\frac{{dxdydz}}{\mathrm{1}+{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} }\:=\frac{\Gamma^{\mathrm{4}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}^{\mathrm{4}} } \\ $$$${where}\:{V}\:{is}\:{the}\:{unit}\:{cube}\:\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{3}} \\ $$$${Thankyou}. \\ $$$$ \\…

lim-n-0-1-nx-n-1-1-x-dx-

Question Number 197292 by universe last updated on 12/Sep/23 $$\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\int_{\mathrm{0}\:} ^{\mathrm{1}} \frac{{nx}^{{n}−\mathrm{1}} }{\mathrm{1}+{x}}{dx}\:\:=\:\:\:? \\ $$ Answered by witcher3 last updated on 12/Sep/23 $$\mathrm{2x}\leqslant\mathrm{1}+\mathrm{x}\leqslant\mathrm{2},\forall\mathrm{x}\in\left[\mathrm{0},\mathrm{1}\right] \\…

Question-197239

Question Number 197239 by universe last updated on 10/Sep/23 Answered by mahdipoor last updated on 11/Sep/23 $$\overset{\frac{{d}}{{dx}}} {\Rightarrow}{xsin}^{{n}} {x}=\left(\frac{{xsin}^{{n}} {x}}{{n}}−\frac{\left({n}−\mathrm{1}\right){xsin}^{{n}−\mathrm{2}} {cos}^{\mathrm{2}} {x}}{{n}}−\frac{{sin}^{{n}−\mathrm{1}} {xcosx}}{{n}}\right) \\ $$$$+\left(\frac{{sin}^{{n}−\mathrm{1}}…

Is-f-x-dx-0-x-lim-x-t-f-x-dt-

Question Number 197212 by MathematicalUser2357 last updated on 10/Sep/23 $$\mathrm{Is}\:\int{f}\left({x}\right){dx}=\int_{\mathrm{0}} ^{{x}} \underset{{x}\rightarrow{t}} {\mathrm{lim}}{f}\left({x}\right){dt}? \\ $$ Commented by mahdipoor last updated on 10/Sep/23 $${if}\:\:\:\:\:{limf}\left({x}\right),{x}\rightarrow{t}={f}\left({t}\right) \\ $$$$\int{f}\left({x}\right){dx}=\int_{\mathrm{0}}…

1-x-3-3x-7-dx-

Question Number 197191 by tri26112004 last updated on 10/Sep/23 $$\int\frac{\mathrm{1}}{{x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{7}}{dx} \\ $$ Answered by Frix last updated on 10/Sep/23 $${x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{7}=\left({x}−{a}\right)\left({x}^{\mathrm{2}} +{ax}+{b}\right) \\ $$$${a}=−\frac{\sqrt[{\mathrm{3}}]{\mathrm{7}+\mathrm{3}\sqrt{\mathrm{5}}}+\sqrt[{\mathrm{3}}]{\mathrm{7}−\mathrm{3}\sqrt{\mathrm{5}}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2}}};\:{b}=−\frac{\mathrm{7}}{{a}}…