Menu Close

Category: Integration

let-f-z-e-1-z-2-1-give-f-z-at-form-of-serie-2-give-1-2-f-z-dz-at-form-of-serie-

Question Number 37352 by math khazana by abdo last updated on 12/Jun/18 $${let}\:\:{f}\left({z}\right)\:=\:{e}^{−\frac{\mathrm{1}}{{z}^{\mathrm{2}} }} \:\: \\ $$$$\left.\mathrm{1}\right)\:{give}\:{f}\left({z}\right)\:{at}\:{form}\:{of}\:{serie} \\ $$$$\left.\mathrm{2}\right)\:{give}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} {f}\left({z}\right){dz}\:\:\:{at}\:{form}\:{of}\:{serie}\:. \\ $$ Commented by…

let-r-p-2-q-2-p-and-q-from-R-and-p-gt-0-q-gt-0-1-prove-that-0-e-px-cos-px-x-dx-pi-r-r-p-2-2-0-e-px-sin-qx-x-dx-pi-r-r-p-2-

Question Number 37347 by math khazana by abdo last updated on 12/Jun/18 $${let}\:{r}\:=\sqrt{{p}^{\mathrm{2}} \:+{q}^{\mathrm{2}} }\:\:\:{p}\:{and}\:{q}\:{from}\:{R}\:\:{and}\:{p}>\mathrm{0}\:\:{q}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\:\int_{\mathrm{0}} ^{+\infty} \:\:{e}^{−{px}} \:\frac{{cos}\left({px}\right)}{\:\sqrt{{x}}}{dx}=\frac{\sqrt{\pi}}{{r}}\sqrt{\frac{{r}+{p}}{\mathrm{2}}} \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{px}} \:\:\frac{{sin}\left({qx}\right)}{\:\sqrt{{x}}}{dx}\:=\frac{\sqrt{\pi}}{{r}}\:\sqrt{\frac{{r}−{p}}{\mathrm{2}}}…

calculate-I-a-0-2pi-1-acost-1-2acost-a-2-dt-1-if-a-lt-1-2-if-a-gt-1-

Question Number 37345 by math khazana by abdo last updated on 12/Jun/18 $${calculate}\:{I}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{\mathrm{1}+{acost}}{\mathrm{1}+\mathrm{2}{acost}\:+{a}^{\mathrm{2}} }{dt}\:\: \\ $$$$\left.\mathrm{1}\right)\:{if}\:\:\mid{a}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{if}\:\mid{a}\mid>\mathrm{1} \\ $$ Terms of Service…

let-f-x-0-1-ln-1-xt-2-dt-with-x-lt-1-1-find-f-x-2-calculate-0-1-ln-2-t-2-dt-

Question Number 37343 by math khazana by abdo last updated on 12/Jun/18 $${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right){dt}\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{2}+{t}^{\mathrm{2}} \right){dt}\:. \\ $$…