Question Number 37278 by abdo.msup.com last updated on 11/Jun/18 $$\:{calculate}\:\int\int_{{D}} \:{x}\:{cos}\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){dxdy} \\ $$$${with}\:{D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\right. \\ $$$$\left.\mathrm{1}\leqslant{y}\leqslant\mathrm{3}\right\} \\ $$ Commented by prof Abdo imad…
Question Number 37279 by abdo.msup.com last updated on 11/Jun/18 $${cslculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\left({x}−{y}\right){e}^{−{x}−{y}} {dxdy}\:. \\ $$ Commented by prof Abdo imad last updated on 18/Jun/18 $${let}\:{use}\:{the}\:{changement}…
Question Number 37275 by abdo.msup.com last updated on 11/Jun/18 $${let}\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:{arctan}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \:. \\ $$ Terms of Service…
Question Number 37276 by abdo.msup.com last updated on 11/Jun/18 $${calculate}\:\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{4}} \:\left(−\mathrm{1}\right)^{\left[{x}\right]} \left({x}^{{n}} \:−{x}\right){dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 168341 by Tibo last updated on 08/Apr/22 $$\int\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} {dx}=? \\ $$ Answered by Florian last updated on 08/Apr/22 $$\:\:=\:\int\mathrm{1}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{x}^{\mathrm{4}} +{x}^{\mathrm{6}} {dx}…
Question Number 37272 by abdo.msup.com last updated on 11/Jun/18 $${let}\:{f}\left({x}\right)={cos}\left({x}−{e}^{−{x}} \right) \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 37270 by abdo.msup.com last updated on 11/Jun/18 $${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}−{x}^{{n}+\mathrm{1}} }{\mathrm{1}−{x}}\right)^{\mathrm{2}} {dx}\:. \\ $$ Answered by abdo.msup.com last updated on 27/Jul/18 $${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 37271 by abdo.msup.com last updated on 11/Jun/18 $${find}\:\:{A}_{{n}} =\int_{\mathrm{1}} ^{\mathrm{2}} \left(\:\mathrm{1}\:+\frac{\mathrm{1}}{{x}}\:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:+…+\frac{\mathrm{1}}{{x}^{{n}} }\right)^{\mathrm{2}} {dx} \\ $$ Commented by prof Abdo imad last updated…
Question Number 168338 by infinityaction last updated on 08/Apr/22 Answered by Mathspace last updated on 08/Apr/22 $$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}^{\mathrm{2}} \left({ax}\right)}{{x}^{\mathrm{2}} }{dx}\:\:\:\:{a}>\mathrm{0} \\ $$$$=_{{ax}={t}} \:\:\int_{\mathrm{0}} ^{\infty}…
Question Number 37258 by rahul 19 last updated on 11/Jun/18 $$\int\:\frac{{x}^{\mathrm{3}} +\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +{x}}}\:{dx}\:=\:? \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 11/Jun/18 $${t}^{\mathrm{2}} ={x}^{\mathrm{2}} +{x}…