Menu Close

Category: Integration

Question-39381

Question Number 39381 by rahul 19 last updated on 05/Jul/18 Answered by ajfour last updated on 06/Jul/18 $${f}\:'\left({x}\right)\geqslant\left[{f}\left({x}\right)\right]^{\mathrm{3}} +\left[{f}\left({x}\right)\right]^{−\mathrm{1}} \\ $$$${and}\:{f}\left(\mathrm{0}\right)=\mathrm{1}\:,\:\:{f}\left({a}\right)=\mathrm{3}^{\mathrm{1}/\mathrm{4}} \\ $$$$\Rightarrow\:\:\:\int_{\mathrm{1}} ^{\:\:{y}} \frac{{dy}}{{y}^{\mathrm{3}}…

Question-39382

Question Number 39382 by rahul 19 last updated on 05/Jul/18 Answered by ajfour last updated on 06/Jul/18 $$\int_{\alpha} ^{\:\:\beta} {f}\left({x}\right){g}'\left({x}\right){dx}\:=\left[{f}\left({x}\right){g}\left({x}\right)\right]_{\alpha} ^{\beta} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\int_{\alpha} ^{\:\:\beta} {f}\:'\left({x}\right){g}\left({x}\right){dx}…

Question-39379

Question Number 39379 by rahul 19 last updated on 05/Jul/18 Commented by MJS last updated on 06/Jul/18 $$\left(\mathrm{1}\right)\:\:\:\:\:\mid\mid{x}\mid−\mid{y}\mid\mid=\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\mathrm{2}{a}\mid{x}\mid\mid{y}\mid+\mathrm{1}=\mathrm{2}\mid{x}\mid+{a}\mid{y}\mid \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\begin{cases}{\left.{y}_{\mathrm{1}} \left.=−\mid{x}\mid−\mathrm{1};\:\mathrm{range}\left({y}_{\mathrm{1}} \right)=\right]−\infty;\:−\mathrm{1}\right]}\\{{y}_{\mathrm{2}} =\mid{x}\mid+\mathrm{1};\:\mathrm{range}\left({y}_{\mathrm{2}}…

let-I-cos-x-1-ix-2-dx-1-extract-Re-I-and-Im-I-2-calculate-I-3-conclude-the-values-of-Re-I-and-Im-I-

Question Number 39370 by maxmathsup by imad last updated on 05/Jul/18 $${let}\:{I}\:\left(\lambda\right)\:=\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\lambda{x}\right)}{\left(\mathrm{1}+{ix}\right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{1}\right)\:\:{extract}\:{Re}\left({I}\left(\lambda\right)\right)\:{and}\:{Im}\left({I}\left(\lambda\right)\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}\left(\lambda\right) \\ $$$$\left.\mathrm{3}\right)\:{conclude}\:\:{the}\:{values}\:{of}\:{Re}\left({I}\left(\lambda\right)\right)\:{and}\:{Im}\left({I}\left(\lambda\right)\right). \\ $$ Commented by…

1-calculate-F-x-1-x-arctan-t-t-2-dt-with-x-1-2-calculate-A-n-1-n-arctan-t-t-2-dt-and-find-lim-n-A-n-

Question Number 39369 by maxmathsup by imad last updated on 05/Jul/18 $$\left.\mathrm{1}\right)\:{calculate}\:{F}\left({x}\right)=\:\int_{\mathrm{1}} ^{\sqrt{{x}}} \:\:\:\frac{{arctan}\left({t}\right)}{{t}^{\mathrm{2}} }{dt}\:\:\:{with}\:{x}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\:{A}_{{n}} =\:\int_{\mathrm{1}} ^{\sqrt{{n}}} \:\:\frac{{arctan}\left({t}\right)}{{t}^{\mathrm{2}} }\:{dt}\:\:{and}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \\ $$ Commented…

let-F-t-0-sinx-x-1-x-2-e-tx-1-x-2-dx-witht-0-1-caculate-dF-dt-t-2-find-a-simple-form-of-F-t-3-find-the-value-of-0-sinx-x-1-x-2-dx-

Question Number 39368 by maxmathsup by imad last updated on 05/Jul/18 $${let}\:{F}\left({t}\right)=\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{sinx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:{e}^{−{tx}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} {dx}\:\:{witht}\geqslant\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{caculate}\:\:\frac{{dF}}{{dt}}\left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{F}\left({t}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{sinx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}}…