Question Number 36918 by maxmathsup by imad last updated on 07/Jun/18 $${calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\left(\mathrm{1}−{i}\right)^{−{x}^{\mathrm{2}} } {dx}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 36919 by maxmathsup by imad last updated on 07/Jun/18 $${calculate}\:{f}\left(\alpha\right)=\:\int_{−\infty} ^{+\infty} \:\left(\mathrm{1}+\alpha{i}\right)^{−{x}^{\mathrm{2}} } {dx}\:. \\ $$ Commented by abdo.msup.com last updated on 10/Jun/18…
Question Number 36916 by maxmathsup by imad last updated on 07/Jun/18 $${let}\:{z}={r}\:{e}^{{i}\theta} \:\:\:\:{fins}\:{f}\left({z}\right)\:=\:\int_{−\infty} ^{+\infty} \:\:{z}^{−{x}^{\mathrm{2}} } {dx} \\ $$ Commented by math khazana by abdo…
Question Number 36917 by maxmathsup by imad last updated on 07/Jun/18 $${calculate}\:\int_{\mathrm{0}} ^{+\infty} \left(\mathrm{1}+{i}\right)^{−{x}^{\mathrm{2}} } {dx} \\ $$ Commented by math khazana by abdo last…
Question Number 36915 by maxmathsup by imad last updated on 07/Jun/18 $${let}\:{z}\:={a}+{ib}\:\:\:{find}\:\:{f}\left({z}\right)\:=\:\int_{−\infty} ^{+\infty} \:{z}^{−{x}^{\mathrm{2}} } {dx} \\ $$ Commented by math khazana by abdo last…
Question Number 36912 by prof Abdo imad last updated on 07/Jun/18 $${let}\:\:\langle{p},{q}\rangle=\:\int_{−\mathrm{1}} ^{\mathrm{1}} {p}\left({x}\right){q}\left({x}\right){dx}\:\:{with}\:{p}\:{and}\:{q}\:{are} \\ $$$${two}\:{polynoms}\:{fromR}\left[{x}\right] \\ $$$$\left.\mathrm{1}\right){let}\:{p}\left({x}\right)={x}^{{n}} \:\:\:{calculate}\:\langle{p},{p}\rangle \\ $$$$\left.\mathrm{2}\right){let}\:{p}\left({x}\right)=\mathrm{1}+{x}+{x}^{\mathrm{2}} \:+….+{x}^{{n}} \\ $$$${find}\:\langle{p},{p}\rangle. \\…
Question Number 36910 by prof Abdo imad last updated on 07/Jun/18 $$\left.\mathrm{1}\right)\:{decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\:\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{3}} \right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int\:{F}\left({x}\right){dx}\:. \\ $$ Terms of Service Privacy Policy…
Question Number 167965 by mnjuly1970 last updated on 30/Mar/22 Answered by mindispower last updated on 01/Apr/22 $$\Omega=\int_{\mathrm{0}} ^{\infty} \mathrm{2}\frac{\mathrm{1}−{e}^{−\mathrm{2}{x}} }{\left(\mathrm{1}+{e}^{−\mathrm{2}\boldsymbol{{x}}} \right)^{\mathrm{2}} \boldsymbol{{x}}}{e}^{−{x}} \\ $$$$=−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 36892 by anik last updated on 06/Jun/18 $$\mathrm{2}.\:\int\left[\sqrt{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)/\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\right]{dx}=? \\ $$ Commented by math khazana by abdo last updated on 11/Jun/18 $${let}\:{I}\:\:=\:\int\:\:\sqrt{\frac{\mathrm{1}−{x}^{\mathrm{2}}…
Question Number 102417 by mathmax by abdo last updated on 09/Jul/20 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{\mathrm{x}} \right)\mathrm{dx} \\ $$ Answered by floor(10²Eta[1]) last updated on 09/Jul/20…