Menu Close

Category: Integration

let-p-q-1-1-p-x-q-x-dx-with-p-and-q-are-two-polynoms-fromR-x-1-let-p-x-x-n-calculate-p-p-2-let-p-x-1-x-x-2-x-n-find-p-p-

Question Number 36912 by prof Abdo imad last updated on 07/Jun/18 $${let}\:\:\langle{p},{q}\rangle=\:\int_{−\mathrm{1}} ^{\mathrm{1}} {p}\left({x}\right){q}\left({x}\right){dx}\:\:{with}\:{p}\:{and}\:{q}\:{are} \\ $$$${two}\:{polynoms}\:{fromR}\left[{x}\right] \\ $$$$\left.\mathrm{1}\right){let}\:{p}\left({x}\right)={x}^{{n}} \:\:\:{calculate}\:\langle{p},{p}\rangle \\ $$$$\left.\mathrm{2}\right){let}\:{p}\left({x}\right)=\mathrm{1}+{x}+{x}^{\mathrm{2}} \:+….+{x}^{{n}} \\ $$$${find}\:\langle{p},{p}\rangle. \\…

1-decompose-inside-R-x-the-fraction-F-x-1-1-x-2-1-x-3-2-find-F-x-dx-

Question Number 36910 by prof Abdo imad last updated on 07/Jun/18 $$\left.\mathrm{1}\right)\:{decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\:\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{3}} \right)} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\int\:{F}\left({x}\right){dx}\:. \\ $$ Terms of Service Privacy Policy…

Question-167965

Question Number 167965 by mnjuly1970 last updated on 30/Mar/22 Answered by mindispower last updated on 01/Apr/22 $$\Omega=\int_{\mathrm{0}} ^{\infty} \mathrm{2}\frac{\mathrm{1}−{e}^{−\mathrm{2}{x}} }{\left(\mathrm{1}+{e}^{−\mathrm{2}\boldsymbol{{x}}} \right)^{\mathrm{2}} \boldsymbol{{x}}}{e}^{−{x}} \\ $$$$=−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}}…

2-1-x-2-1-x-2-dx-

Question Number 36892 by anik last updated on 06/Jun/18 $$\mathrm{2}.\:\int\left[\sqrt{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)/\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\right]{dx}=? \\ $$ Commented by math khazana by abdo last updated on 11/Jun/18 $${let}\:{I}\:\:=\:\int\:\:\sqrt{\frac{\mathrm{1}−{x}^{\mathrm{2}}…