Menu Close

Category: Integration

let-f-a-0-1-e-t-ln-1-e-at-dt-with-a-0-1-find-f-a-2-calculate-f-a-3-find-the-value-of-0-1-e-t-ln-1-e-3t-dt-

Question Number 36755 by prof Abdo imad last updated on 05/Jun/18 $${let}\:{f}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{{t}} {ln}\left(\mathrm{1}+\:{e}^{−{at}} \right){dt}\:\:{with}\:{a}\geqslant\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{f}^{'} \left({a}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{{t}}…

find-dx-arcsinx-1-x-2-

Question Number 36752 by prof Abdo imad last updated on 05/Jun/18 $${find}\:\:\int\:\:\:\frac{{dx}}{{arcsinx}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:. \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18 $${is}\:{it}\:\int\frac{{dx}}{{sin}^{−\mathrm{1}} \left({x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\right)}\:\:{pls}\:{clarify}…

let-f-x-n-1-sin-nx-n-x-n-1-prove-that-f-is-C-1-on-1-1-2-calculate-f-x-and-prove-that-f-x-arctan-xsinx-1-x-cosx-

Question Number 36747 by prof Abdo imad last updated on 05/Jun/18 $${let}\:{f}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{sin}\left({nx}\right)}{{n}}\:{x}^{{n}} \\ $$$$\left.\mathrm{1}\left.\right)\:{prove}\:{that}\:{f}\:{is}\:{C}^{\mathrm{1}} \:{on}\:\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$$\left.\mathrm{2}\right){calculate}\:{f}^{'} \left({x}\right)\:{and}\:{prove}\:{that} \\ $$$${f}\left({x}\right)={arctan}\left(\:\frac{{xsinx}}{\mathrm{1}−{x}\:{cosx}}\right) \\ $$ Commented…

1-2-ln-x-4-4-x-2-4-dx-x-

Question Number 102275 by malwaan last updated on 07/Jul/20 $$\int_{\mathrm{1}} ^{\mathrm{2}} \:\boldsymbol{{ln}}\left(\frac{\boldsymbol{{x}}^{\mathrm{4}} \:+\:\mathrm{4}}{\boldsymbol{{x}}^{\mathrm{2}} \:+\:\mathrm{4}}\right)\frac{\boldsymbol{{dx}}}{\boldsymbol{{x}}} \\ $$ Commented by Dwaipayan Shikari last updated on 08/Jul/20 $$\mathrm{0}…

1-d-1-sin-2-2-2-d-1-cos-2-2-3-d-1-sin-2-1-cos-2-

Question Number 36738 by MJS last updated on 04/Jun/18 $$\left(\mathrm{1}\right)\:\:\:\:\:\int\frac{{d}\alpha}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2}\alpha\right)^{\mathrm{2}} }= \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\int\frac{{d}\beta}{\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\beta\right)^{\mathrm{2}} }= \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\:\int\frac{{d}\gamma}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2}\gamma\right)\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\gamma\right)}= \\ $$ Commented by behi83417@gmail.com last updated on 05/Jun/18…