Question Number 202636 by ibroclex_adex last updated on 30/Dec/23
Question Number 202592 by Calculusboy last updated on 30/Dec/23
Question Number 202543 by mr W last updated on 29/Dec/23 Commented by mr W last updated on 29/Dec/23
Question Number 202522 by mou0113 last updated on 28/Dec/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 202490 by Calculusboy last updated on 27/Dec/23 Commented by aleks041103 last updated on 27/Dec/23
Question Number 202485 by Calculusboy last updated on 27/Dec/23 Commented by MathematicalUser2357 last updated on 28/Dec/23
Question Number 202448 by Calculusboy last updated on 26/Dec/23 Answered by professorleiciano last updated on 27/Dec/23
Question Number 202418 by MathematicalUser2357 last updated on 26/Dec/23
Question Number 202415 by MathematicalUser2357 last updated on 26/Dec/23
Question Number 202406 by mou0113 last updated on 26/Dec/23 Answered by witcher3 last updated on 26/Dec/23 $$\mathrm{f}\left(\mathrm{s}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{t}^{\mathrm{s}} }{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dt}\Rightarrow\mathrm{f}'\left(\mathrm{0}\right)=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\left(\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}}…