Question Number 196013 by pticantor last updated on 15/Aug/23 $${quel}\:{est}\:{la}\:{transformer}\:{de}\:{Fourier}\:{de}\:{la}\:{fonction} \\ $$$${suivante}: \\ $$$${f}\left({x}\right)=\boldsymbol{{e}}^{−\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$\boldsymbol{{F}}{ind}\:{the}\:{Fourier}\:{transform}\:{of}\:{the}\: \\ $$$${following}\:{fonction}. \\ $$ Answered by witcher3 last…
Question Number 195995 by pticantor last updated on 15/Aug/23 $$\Delta=\left\{\left(\bar {{x}}\:{y}\:{z}\right),\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\mathrm{1},\:{x}\geqslant\mathrm{0},\mathrm{0}<{z}<{y}+\mathrm{1}\right\} \\ $$$${calculer}\:\boldsymbol{{I}}=\int\int\int_{\Delta} {xyzdxdydz} \\ $$$${please}\:{i}\:{need}\:{help} \\ $$ Answered by aleks041103 last updated…
Question Number 195910 by Calculusboy last updated on 13/Aug/23 Answered by witcher3 last updated on 20/Aug/23 $$\mathrm{Methode}\:\mathrm{of}\:\mathrm{differentiation}\:? \\ $$$$\mathrm{A}=\mathrm{ln}\left(\mathrm{2}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{ln}\left(\mathrm{x}\right)}\mathrm{dx} \\ $$$$\mathrm{A}\left(\mathrm{a}\right)=\mathrm{ln}\left(\mathrm{2}\right)\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 195846 by mnjuly1970 last updated on 11/Aug/23 $$ \\ $$$$\:\:\:\:\:\:\begin{cases}{\:\:\:\Omega_{\mathrm{1}} \:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{x}^{\:\mathrm{2}} }{{sin}^{\:\mathrm{2}} \left({x}\right)}\:{dx}\:}\\{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\:\frac{\Omega_{\mathrm{1}} }{\Omega_{\:\mathrm{2}} }\:=\:?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}\\{\:\:\Omega_{\:\mathrm{2}} =\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{x}}{{tan}\left({x}\right)}\:{dx}}\end{cases} \\ $$$$ \\…
Question Number 195803 by ajfour last updated on 10/Aug/23 $$\int\frac{\sqrt{{x}}{dx}}{\:\sqrt{−\mathrm{1}+\sqrt{\mathrm{2}−\left({x}+\mathrm{1}\right)^{\mathrm{2}} }}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 195468 by Calculusboy last updated on 03/Aug/23 $$\int\frac{{x}^{\mathrm{5}} +{x}^{\mathrm{2}} }{\left({x}^{\mathrm{6}} +\mathrm{2}{x}^{\mathrm{3}} \right)^{\mathrm{7}} }{dx} \\ $$ Answered by Frix last updated on 03/Aug/23 $${t}={x}^{\mathrm{6}}…
Question Number 195416 by Calculusboy last updated on 02/Aug/23 Answered by MrGHK last updated on 06/Aug/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 195224 by Rodier97 last updated on 28/Jul/23 $$\:\:\:\:\:\:\:\int_{\mathrm{1}} ^{\mathrm{e}} \mathrm{0}\:{dx}\:=\:?? \\ $$ Answered by Frix last updated on 27/Jul/23 $$=\mathrm{0}\underset{\mathrm{1}} {\overset{\mathrm{e}} {\int}}{dx}=\mathrm{0} \\…
Question Number 195126 by Erico last updated on 25/Jul/23 $$\mathrm{Soit}\:{f}_{{n}} \left({x}\right)=\mathrm{2}^{{n}+\mathrm{1}} \left[\frac{\frac{\mathrm{1}}{\mathrm{2}^{{n}} }{cotan}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)−{cotanx}}{{sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)}\right] \\ $$$${Calculer}\:\underset{{x}\rightarrow\mathrm{0}} {{lim}f}_{{n}} \left({x}\right)\:{et}\:\underset{{n}\rightarrow+\infty} {{lim}}\:\frac{{f}_{{n}} \left({x}\right)}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{2}} } \\ $$ Answered…
Question Number 195082 by Rupesh123 last updated on 23/Jul/23 Terms of Service Privacy Policy Contact: info@tinkutara.com