Menu Close

Category: Integration

Find-the-shortest-distance-between-the-curves-9x-2-9y-2-30y-16-0-and-y-2-x-3-

Question Number 37777 by rahul 19 last updated on 17/Jun/18 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{between} \\ $$$$\mathrm{the}\:\mathrm{curves}\:\mathrm{9}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} −\mathrm{30}{y}+\mathrm{16}=\mathrm{0}\:{and} \\ $$$${y}^{\mathrm{2}} ={x}^{\mathrm{3}} \:. \\ $$ Answered by MJS last…

Question-168772

Question Number 168772 by Dildora last updated on 17/Apr/22 Commented by safojontoshtemirov last updated on 18/Apr/22 $${S}=\mathrm{4}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\sqrt{\left(\left({e}^{{t}} {sint}\right)'\right)^{\mathrm{2}} +\left(\left({e}^{{t}} {cost}\right)'\right)^{\mathrm{2}} }{dt}\: \\ $$$${S}=\mathrm{4}\underset{\mathrm{0}}…

Question-168762

Question Number 168762 by Dildora last updated on 17/Apr/22 Commented by cortano1 last updated on 17/Apr/22 $$\:\int\:\frac{\mathrm{2sin}\:\frac{\mathrm{1}}{\mathrm{2}}{x}\:\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}{x}}{\mathrm{2cos}\:\frac{\mathrm{1}}{\mathrm{2}}{x}\left(\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}{x}+\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}{x}\right)}\:{dx} \\ $$$$\:=\:\int\:\frac{\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}{x}}{\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}{x}+\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}{x}}\:{dx} \\ $$$$\:=\:\int\:\frac{\mathrm{2sin}\:{u}}{\mathrm{cos}\:{u}+\mathrm{sin}\:{u}}\:{du}\:;\:\left[\frac{\mathrm{1}}{\mathrm{2}}{x}={u}\:\right] \\ $$$$\frac{\mathrm{2sin}\:{u}}{\mathrm{cos}\:{u}+\mathrm{sin}\:{u}}\:=\:{A}\left(\frac{\mathrm{sin}\:{u}+\mathrm{cos}\:{u}}{\mathrm{sin}\:{u}+\mathrm{cos}\:{u}}\right)+{B}\left(\frac{{d}\left(\mathrm{sin}\:{u}+\mathrm{cos}\:{u}\right)}{\mathrm{sin}\:{u}+\mathrm{cos}\:{u}}\right) \\ $$$$\Rightarrow\mathrm{2sin}\:{u}=\:{A}\mathrm{sin}\:{u}+{A}\mathrm{cos}\:{u}+{B}\mathrm{cos}\:\:{u}−{B}\mathrm{sin}\:{u}…