Question Number 167150 by mathlove last updated on 08/Mar/22 Answered by som(math1967) last updated on 08/Mar/22 $$\:{let}\:\left({arctanx}^{{arctanx}^{…} } \right)={z} \\ $$$$\:{arctanx}^{{arctanx}^{…} } {lnarctanx}={lnz} \\ $$$$\:{zlnarctanx}={lnz}…
Question Number 101608 by M±th+et+s last updated on 03/Jul/20 $$\int_{\mathrm{0}\:} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{{ln}^{\mathrm{2}} \left({sin}\left(\theta\right)\right)}{\pi^{\mathrm{2}} +{ln}^{\mathrm{2}} \left({sin}\left(\theta\right)\right)}\right)\frac{{ln}\left({cos}\left(\theta\right)\right)}{{tan}\left(\theta\right)}{d}\theta \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 101601 by Dwaipayan Shikari last updated on 03/Jul/20 $$\int_{\sqrt{\mathrm{2}}−\mathrm{1}} ^{\sqrt{\mathrm{2}}+\mathrm{1}} \frac{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$ Answered by bemath last updated on…
Question Number 101597 by Rio Michael last updated on 03/Jul/20 $$\:\int\:\mathrm{ln}\:\left(\mathrm{1}+\:{e}^{{x}} \right)\:{dx}\:=\:.. \\ $$ Commented by Dwaipayan Shikari last updated on 03/Jul/20 $$\int\left({e}^{{x}} −\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}{x}} +\frac{\mathrm{1}}{\mathrm{3}}{e}^{\mathrm{3}{x}}…
Question Number 36056 by abdo mathsup 649 cc last updated on 28/May/18 $${calculate}\:\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{2}{x}}{\left({x}^{\mathrm{2}} \:+{mx}\:+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:{with}\:\mid{m}\mid<\mathrm{2} \\ $$ Commented by abdo mathsup 649 cc…
Question Number 36057 by abdo mathsup 649 cc last updated on 28/May/18 $${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\:\frac{{cosx}}{{sinx}\:+{tanx}}{dx}\: \\ $$ Commented by abdo mathsup 649 cc last updated…
Question Number 101585 by Rohit@Thakur last updated on 03/Jul/20 $$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{1}}{{a}^{\mathrm{2}} −\mathrm{2}{a}\:{cosx}\:+\:\mathrm{1}}{dx}\:\left({a}<\mathrm{1}\right)\:{is} \\ $$$$ \\ $$ Answered by mathmax by abdo last updated on…
Question Number 167115 by mnjuly1970 last updated on 06/Mar/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 36031 by kami last updated on 27/May/18 $$\mathrm{Q}.\:\mathrm{Evaluate}:\:\:\:\int_{\int\mathrm{xyzdxdydz}} ^{\int\mathrm{zyxdzdydx}} \int_{\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{sin}\:\mathrm{x}} \right)} ^{\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{cos}\:\mathrm{x}} \right)} \int_{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{x}^{\mathrm{2}} +\mathrm{2}}{\mathrm{x}}} ^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{2}}{\mathrm{x}}} \int_{\mathrm{0}} ^{\infty} \mathrm{w}^{\mathrm{1}−\mathrm{x}} \mathrm{x}^{\mathrm{1}−\mathrm{y}}…
Question Number 167102 by mnjuly1970 last updated on 06/Mar/22 $$ \\ $$$$\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{Li}_{\:\mathrm{2}} \left(\mathrm{1}−\:{x}\:\right)}{\mathrm{1}+{x}}\:{dx}\:=\:? \\ $$$$\:\:\:\:\:\:−−−−− \\ $$ Terms of Service Privacy Policy Contact:…