Menu Close

Category: Integration

0-pi-2-ln-ln-2-sin-pi-2-ln-2-sin-ln-cos-tan-d-

Question Number 101608 by  M±th+et+s last updated on 03/Jul/20 $$\int_{\mathrm{0}\:} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{{ln}^{\mathrm{2}} \left({sin}\left(\theta\right)\right)}{\pi^{\mathrm{2}} +{ln}^{\mathrm{2}} \left({sin}\left(\theta\right)\right)}\right)\frac{{ln}\left({cos}\left(\theta\right)\right)}{{tan}\left(\theta\right)}{d}\theta \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

ln-1-e-x-dx-

Question Number 101597 by Rio Michael last updated on 03/Jul/20 $$\:\int\:\mathrm{ln}\:\left(\mathrm{1}+\:{e}^{{x}} \right)\:{dx}\:=\:.. \\ $$ Commented by Dwaipayan Shikari last updated on 03/Jul/20 $$\int\left({e}^{{x}} −\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}{x}} +\frac{\mathrm{1}}{\mathrm{3}}{e}^{\mathrm{3}{x}}…

Q-Evaluate-xyzdxdydz-zyxdzdydx-d-dx-x-sin-x-d-dx-x-cos-x-lim-x-0-x-2-2-x-lim-x-0-x-2-2-x-0-w-1-x-x-1-y-y-1-z-z-1-w-dwdxdydz-

Question Number 36031 by kami last updated on 27/May/18 $$\mathrm{Q}.\:\mathrm{Evaluate}:\:\:\:\int_{\int\mathrm{xyzdxdydz}} ^{\int\mathrm{zyxdzdydx}} \int_{\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{sin}\:\mathrm{x}} \right)} ^{\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{cos}\:\mathrm{x}} \right)} \int_{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{x}^{\mathrm{2}} +\mathrm{2}}{\mathrm{x}}} ^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{2}}{\mathrm{x}}} \int_{\mathrm{0}} ^{\infty} \mathrm{w}^{\mathrm{1}−\mathrm{x}} \mathrm{x}^{\mathrm{1}−\mathrm{y}}…