Question Number 35992 by abdo mathsup 649 cc last updated on 26/May/18 $${let}\:{f}\left({x}\right)=\:\frac{{sin}\left(\mathrm{2}{x}\right)}{{x}}\:\chi_{\left.\right]−{a},{a}\left[\right.} \left({x}\right)\:\:{with}\:{a}>\mathrm{0} \\ $$$${calculate}\:{the}\:{fourier}\:{trsnsform}\:{of}\:{f}\:. \\ $$ Commented by abdo mathsup 649 cc last…
Question Number 35990 by abdo mathsup 649 cc last updated on 26/May/18 $${calculate}\:\int_{\mathrm{2}} ^{\mathrm{5}} \:\:\:\:\frac{{xdx}}{\mathrm{2}{x}+\mathrm{1}\:+\sqrt{{x}−\mathrm{1}}} \\ $$ Commented by abdo mathsup 649 cc last updated…
Question Number 35983 by abdo mathsup 649 cc last updated on 26/May/18 $${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{2}\sqrt{{t}}\:+\mathrm{1}}{{t}^{\mathrm{5}} \:\:\:+\mathrm{3}}{dt}\:\:. \\ $$ Commented by prof Abdo imad last updated…
Question Number 35982 by abdo mathsup 649 cc last updated on 26/May/18 $${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−{arctsn}\left(\:\mathrm{1}+{tx}^{\mathrm{2}} \right)} {dx}\:\:{with}\:{t}\:{from}\:{R} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{'} \left({t}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({t}\right)\:. \\ $$ Terms…
Question Number 167048 by mnjuly1970 last updated on 05/Mar/22 $$ \\ $$$$\:\:\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\Phi=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}.\psi\:\left(\mathrm{2}+{x}\:\right)=\:\mathrm{2}\:−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{8}\pi\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:−−− \\ $$ Answered by shikaridwan…
Question Number 167040 by cortano1 last updated on 05/Mar/22 $$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\mathrm{1}+\mathrm{sin}\:^{\mathrm{6}} \mathrm{x}}\:\mathrm{dx}=? \\ $$ Commented by greogoury55 last updated on 05/Mar/22 $${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sec}\:^{\mathrm{6}}…
Question Number 167025 by peter frank last updated on 04/Mar/22 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}\:}\mathrm{sin}\:^{\mathrm{2}} \theta}\:\mathrm{d}\theta \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 101493 by bemath last updated on 03/Jul/20 $$\int\sqrt{\mathrm{x}.\sqrt[{\mathrm{3}}]{\mathrm{x}.\sqrt[{\mathrm{4}}]{\mathrm{x}.\sqrt[{\mathrm{5}}]{\mathrm{x}.\sqrt[{\mathrm{6}}]{\mathrm{x}.\sqrt[{\mathrm{7}}]{\mathrm{x}…}}}}}}\:\mathrm{dx}\:=\: \\ $$$$ \\ $$ Answered by floor(10²Eta[1]) last updated on 03/Jul/20 $${let}'{s}\:{see}\:{a}\:{small}\:{case}\:{first}\:{to}\:{understand} \\ $$$${better}\:{whats}\:{going}\:{on} \\…
Question Number 167024 by peter frank last updated on 04/Mar/22 $$\int\mathrm{sec}\:\theta\mathrm{tan}\:^{\mathrm{4}} \theta\mathrm{d}\theta \\ $$ Answered by cortano1 last updated on 05/Mar/22 $$\:\mathrm{let}\:\mathrm{t}\:=\:\mathrm{tan}\:\theta \\ $$$$\mathrm{I}=\int\:\frac{\mathrm{t}^{\mathrm{4}} }{\:\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}}…
Question Number 101486 by I want to learn more last updated on 02/Jul/20 Terms of Service Privacy Policy Contact: info@tinkutara.com