Menu Close

Category: Integration

Question-101451

Question Number 101451 by yahyajan last updated on 02/Jul/20 Commented by Dwaipayan Shikari last updated on 02/Jul/20 $${sin}^{−\mathrm{1}} {x}\int\mathrm{1}{dx}−\int\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$$${xsin}^{−\mathrm{1}} {x}\:+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{−\mathrm{2}{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}\:\:\:={xsin}^{−\mathrm{1}} {x}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}}…

7x-6-x-2-25-x-3-2-4-dx-

Question Number 35909 by ajfour last updated on 25/May/18 $$\int\frac{\mathrm{7}{x}−\mathrm{6}}{\left({x}^{\mathrm{2}} +\mathrm{25}\right)\sqrt{\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\mathrm{4}}}\:{dx}\:=\:? \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 26/May/18 $${this}\:{nut}\:{is}\:{hard}\:{to}\:{crack}…{i}\:{am}\:{fighting}..{hope} \\ $$$${reach}\:{the}\:{destination}\:{to}\:{get}\:{it}\:{solved}… \\…

e-x-sin-x-1-cos-x-1-dx-

Question Number 166959 by cortano1 last updated on 03/Mar/22 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\gamma=\int\:\frac{\mathrm{e}^{\mathrm{x}} \left(\mathrm{sin}\:\mathrm{x}+\mathrm{1}\right)}{\mathrm{cos}\:\mathrm{x}+\mathrm{1}}\:\mathrm{dx}\:=? \\ $$ Answered by ArielVyny last updated on 03/Mar/22 $$\gamma=\int\frac{{e}^{{x}} \left({sinx}+\mathrm{1}\right)}{{cosx}+\mathrm{1}}{dx} \\ $$$${t}={tan}\left(\frac{{x}}{\mathrm{2}}\right)\rightarrow\mathrm{2}{arctan}\left({t}\right)={x} \\…

Question-166939

Question Number 166939 by cortano1 last updated on 03/Mar/22 Answered by som(math1967) last updated on 03/Mar/22 $$\int\frac{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} }{{x}^{\mathrm{6}} +\mathrm{1}}{dx} \\ $$$$\int\frac{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{\left({x}^{\mathrm{2}}…

n-1-H-n-n-n-1-n-1-1-n-1-0-1-x-n-1-ln-1-x-dx-0-1-1-x-2-ln-1-x-n-1-x-n-1-n-1-dx-

Question Number 166916 by mnjuly1970 last updated on 02/Mar/22 $$ \\ $$$$\:\:\:\:\:\Omega=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{H}_{\:{n}} }{{n}\left({n}+\mathrm{1}\right)}\:= \\ $$$$\:\:\:\:\:\:\:−−−−−− \\ $$$$\:\:\:\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\int_{\mathrm{0}\:} ^{\:\mathrm{1}} {x}^{\:{n}−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\:\right){dx} \\…