Question Number 37284 by abdo.msup.com last updated on 11/Jun/18 $${find}\:\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{{n}} }{{ch}\left({x}\right)}\:{dx}\:. \\ $$ Commented by prof Abdo imad last updated on 17/Jun/18…
Question Number 168355 by Mathspace last updated on 08/Apr/22 $$\left.{let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{{n}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}{n}+\mathrm{1}} }\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{equivalent}\:{of}\:{U}_{{n}} \left({n}\sim\infty\right) \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{comvergence}\:{of}\:\Sigma\:{U}_{{n}} \\ $$ Answered by Mathspace…
Question Number 37280 by abdo.msup.com last updated on 11/Jun/18 $${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{6}} \:\:\:\frac{{e}^{{x}−\left[{x}\right]} }{\mathrm{1}+{e}^{{x}} }{dx}\:. \\ $$ Commented by prof Abdo imad last updated on 16/Jun/18…
Question Number 37281 by abdo.msup.com last updated on 11/Jun/18 $${find}\:{a}\:{better}\:{approximation}\:{for}\:{the} \\ $$$${integrals}\: \\ $$$$\left.\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{−{x}^{\mathrm{2}} } {dx} \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{1}} ^{+\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}\:. \\…
Question Number 37278 by abdo.msup.com last updated on 11/Jun/18 $$\:{calculate}\:\int\int_{{D}} \:{x}\:{cos}\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){dxdy} \\ $$$${with}\:{D}=\left\{\left({x},{y}\right)\in{R}^{\mathrm{2}} /\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\right. \\ $$$$\left.\mathrm{1}\leqslant{y}\leqslant\mathrm{3}\right\} \\ $$ Commented by prof Abdo imad…
Question Number 37279 by abdo.msup.com last updated on 11/Jun/18 $${cslculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\:\left({x}−{y}\right){e}^{−{x}−{y}} {dxdy}\:. \\ $$ Commented by prof Abdo imad last updated on 18/Jun/18 $${let}\:{use}\:{the}\:{changement}…
Question Number 37275 by abdo.msup.com last updated on 11/Jun/18 $${let}\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:{arctan}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \:. \\ $$ Terms of Service…
Question Number 37276 by abdo.msup.com last updated on 11/Jun/18 $${calculate}\:\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{4}} \:\left(−\mathrm{1}\right)^{\left[{x}\right]} \left({x}^{{n}} \:−{x}\right){dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 168341 by Tibo last updated on 08/Apr/22 $$\int\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} {dx}=? \\ $$ Answered by Florian last updated on 08/Apr/22 $$\:\:=\:\int\mathrm{1}+\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{x}^{\mathrm{4}} +{x}^{\mathrm{6}} {dx}…
Question Number 37272 by abdo.msup.com last updated on 11/Jun/18 $${let}\:{f}\left({x}\right)={cos}\left({x}−{e}^{−{x}} \right) \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com